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Abstract—This paper describes a novel self-referencing inter-
ferometric method for measuring the time-dependent intensity
and phase of ultrashort optical pulses. The technique, spectral
phase interferometry for direct electric-field reconstruction (SPI-
DER), measures the interference between a pair of spectrally
sheared replicas of the input pulse. Direct (noniterative) inversion
of the interferogram yields the electric field of the input pulse
without ambiguity. The interferogram, which is solely a function
of frequency, is resolved with a spectrometer and recorded with
a slow detector. Moreover, the geometry is entirely collinear and
requires no moving components. This paper describes in detail
the principle of operation, apparatus, and calibration of SPIDER
and gives experimental examples of reconstructed pulses.

Index Terms— Pulse characterization, pulse measurements,
pulse reconstruction, ultrafast optics.

I. INTRODUCTION

T HERE ARE three known strategies for measuring the
electric field of optical pulses; spectrography, tomogra-

phy, and interferometry [1], [2]. The most common of these,
spectrographic techniques, such as frequency-resolved optical
gating (FROG) [3], temporal analysis of spectral components
(TASC) [4], frequency-domain phase measurements (FDPM)
[5], and spectrally and temporally resolved upconversion tech-
nique (STRUT) [6], measure a two-dimensional (2-D) repre-
sentation of the one-dimensional (1-D) field and consequently
require the collection of a relatively large amount of data.
Moreover, unless the pulse has a simple structure, spectrogra-
phy requires sophisticated iterative data inversion algorithms
to reconstruct the field. Tomography also requires a large 2-D
data set, but data inversion is direct (noniterative). In practice,
however, it is difficult to fabricate a tomographic apparatus
with a bandwidth of several terahertz and, consequently,
tomography has not been applied to ultrafast pulses, although
tomographic-like methods that require iterative inversion have
been demonstrated [7]. Interferometry, in contrast, requires
only a 1-D data set to reconstruct a 1-D field and uses
direct data inversion to do so. Diels has demonstrated an
interferometric method that uses an ultrafast photodiode and
Schottky diode nonlinear mixer to record the beat notes
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between pairs of spectral components of the input pulse [8].
Similarly, direct optical spectral phase measurement (DOSPM)
[9] uses a nonlinear time gate to record the interference beats.
Because data collection requires either a fast detector or a
fast nonlinear time gate, neither of these techniques has seen
widespread use.

This paper describes an interferometric method for char-
acterizing ultrashort optical pulses that does not rely on a
fast detector or a fast time gate and still uses direct data
inversion. The technique, spectral phase interferometry for
direct electric-field reconstruction (SPIDER), is a specific
implementation of spectral shearing interferometry [10], [11].
SPIDER uses nonlinear frequency mixing to generate a pair
of identical but frequency-sheared replicas of the input pulse.
The interference between this pair of pulses is recorded easily
with a spectrometer followed by an integrating (i.e., slow)
detector. Moreover, the geometry is entirely collinear, the
apparatus requires no moving components, and the direct
inversion routine is simple, rapid, and robust. Section II of this
paper describes the relationship between the electric field that
describes an optical pulse and its analytic signal and defines the
related quantities such as the time-dependent intensity, time-
dependent phase, and absolute phase. Section III describes the
principles of spectral shearing interferometry and details the
data inversion routine used with SPIDER. Finally, Section IV
describes the components and calibration of the SPIDER
apparatus and provides examples of pulses reconstructed from
experimental data.

II. DESCRIBING AN OPTICAL PULSE BY ITS ANALYTIC SIGNAL

The real electric field underlying an optical pulse
is twice the real part of its analytic signal

. The analytic signal is the single-sided inverse
Fourier transform of the Fourier transform of the field

(1)

where

(2)

The electric field is considered to have compact support in
the time domain and is further assumed to have no spectral
component at , so . The analytic signal
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is complex and therefore can be expressed uniquely in terms
of an amplitude and phase

(3)

where is the time-dependent envelope, is the car-
rier frequency (usually chosen near the center of the pulse
spectrum), is the time-dependent phase, and is the
absolute phase. The square of the envelope is the time-
dependent intensity of the pulse. The time-dependent phase
accounts for the occurrence of different frequencies at different
times, and the absolute phase specifies the position of the
carrier relative to the envelope.

Since the pulse has no dc spectral component, the electric
field must have zero area: . As a result,
the absolute phase of the pulse is fixed once the envelope,
time-dependent phase, and carrier frequency are specified. In
practice, though, unless the pulse duration is close to a single
cycle, changes dramatically in response to immeasurably
small changes in the envelope. Consequently, pulse character-
ization devices should strive to measure the absolute phase as
if it were a free parameter. We note parenthetically that none
of the pulse measurement techniques demonstrated to date,
including SPIDER, return the absolute phase.

The frequency representation of the analytic signal is the
Fourier transform of

(4)

is often expressed as

(5)

where is the spectral amplitude, is the spectral
phase, and is the absolute phase. The square of the spec-
tral amplitude is the spectral intensity—the familiar
quantity measured with a spectrometer—and the spectral phase
describes the relative phases of all the frequencies.

To reconstruct the electric field, one need only measure
its Fourier transform for a finite set of frequencies. The
Whittaker–Shannon sampling theorem [12] asserts that, if the
field has compact support in the time domain over a range

, then a sampling of at the Nyquist frequency
interval of is sufficient for reconstructing the analytic
signal and, consequently, the electric field exactly.

III. SPIDER: A SPECTRAL SHEARING INTERFEROMETER

A. The Principles of Spectral Shearing

The fastest photodetectors cannot directly measure the en-
velope, much less the carrier, of ultrafast optical pulses. It is
possible, though, to use slow photodetectors, provided a set
of linear filters of known response functions are available.
One simply records the output energy as a function of the
filter parameters (such as the center of the passband of a
spectrometer, for instance). Two classes of linear filter are
both necessary and sufficient for measuring the electric field
of optical pulses: time stationary filters, in which the time of
incidence of the input pulse does not affect the output, and

Fig. 1. A generalized spectral shearing interferometer. The input pulse is
split into two replicas at a beamsplitter. One replica is delayed by a linear
spectral phase modulator (upper path) and the other replica is frequency shifted
by a linear temporal phase modulator (lower path). The filtered pulses are
recombined on the second beamsplitter and the resulting interferogram is
resolved with a spectrometer.

frequency stationary filters, the output of which is unchanged
by arbitrary frequency shifts of the input. Filters from these
two classes can be combined to synthesize a linear filter of
arbitrary response. Moreover, these are the only filters that
have been used to date in pulse-shape measurement and are
the easiest to implement in practice.

There are two additional important filter specializations:
amplitude-only and phase-only. These filters behave as their
names suggest; the former provides amplitude modulation
while the later modulates only phase. An example of an
amplitude-only time-stationary filter is the spectrometer,
whose idealized transfer function is

(6)

where is the center frequency and is the frequency
passband. denotes that this filter is time-stationary and
the superscript indicates that it is an amplitude filter.
Since even modest spectrometers have resolutions significantly
better than a terahertz, they can easily resolve the spectral
intensity of ultrashort optical pulses. But, to measure phase,
one needs at least two linear filters—one time-stationary
and one frequency-stationary. Spectral shearing relies on an
interferometric arrangement of such filters.

A schematic spectral shearing interferometer is shown in
Fig. 1. The interferometer consists of in-parallel phase filters,
one linear temporal phase modulator and one linear spectral
phase modulator, followed by a spectrometer. A beamsplitter
generates two replicas of the input pulse. One pulse replica
passes through the temporal phase modulator and the other
passes through the spectral phase modulator. The filtered
pulses are recombined on a second beamsplitter and the
resulting signal is resolved with a spectrometer. Since the
spectrometer is a time-stationary device, the key linear phase
filter is the frequency-stationary temporal phase modulator.
The temporal phase modulator shifts the spectrum of the input
pulse by . Its response function is

(7)

where denotes that this filter is time nonstationary, the
superscript indicates that it is a phase filter, and the subscript

specifies that the phase modulation is linear. Likewise, the
transfer function of the spectral phase modulator is

(8)
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Fig. 2. Simulated spectral interferogram of the interference of a pair of
spectrally sheared pulses. The pulses are delayed with respect to one another
by � and, consequently, the nominal fringe spacing is2�=� . Spectral phase of
the input pulse manifests itself as variations from the nominal fringe spacing.

This filter simply delays an input pulse by. The signal
obtained after the combined pulses are passed through the
spectrometer is

(9)

Since the spectral shift and the temporal delay are fixed, the
only variable is the center frequency of the spectrometer.
Furthermore, the spectrometer usually has a passband much
narrower than the spectrum of the input pulse. In this case,
the square of its transfer function is reliably approximated by
a delta function , and the signal
is simply

(10)

is a standard shearing interferogram consisting of
fringes nominally spaced in frequency at . A simulated
interferogram is shown in Fig. 2. The spectral phase of the
input pulse, in the form of the phase difference

between two different frequency components of the
test pulse, manifests itself as perturbations from the nominal
fringe spacing.

B. Inverting the Data

The spectral phase is extracted from the interferogram of
(10) by analyzing the relative positions of the fringes. To
simplify the analysis, we write the interferogram as

(11)

where

(12)

(13)

Fig. 3. The Fourier transform of the interferogram of Fig. 2. The Fourier
transform is complex but only the real part is shown. The desired phase
information is contained in the component centered near+� . This component
is isolated by multiplying the Fourier transform (both the real and imaginary
quadratures) by a filter function centered at+� .

and

(14)

The dc portion of the interferogram [see (12)] is the sum of
the individual spectra of the pulses and contains no phase
information. The ac terms [see (13) and (14)] are the result of
the interference and contain all of the phase information.

There are three steps for reconstructing the spectral phase
from the interferogram. First, isolate one of the ac terms, and
hence , with a Fourier transform
and filter technique. Second, remove by subtracting a
calibration phase. Third, reconstruct by concatenating
the spectral phase difference.

To isolate the spectral phase difference, we use a robust
algorithm introduced by Takedaet al. [13] in which the
data is Fourier transformed with respect to the spectrome-
ter frequency, filtered, and inverse transformed. The Fourier
transform is

FT

FT

FT (15)

This time series has components centered near as
well as a component at , as illustrated in Fig. 3. The
component at is the Fourier transform of the dc portion
of the interferogram. The components arise from the
Fourier transforms of the ac portions of the interferogram. If

is sufficiently large, the and components are well
separated in time and, as a result, the unwanted dc and negative
ac components can be removed by filtering. For this purpose,
we use a fourth-order super Gaussian of full width
centered at . The filtered signal

FT

(16)

is simply the Fourier transform of the positive ac portion
of the interferogram. The spectral phase difference

is the argument of the inverse transform of

IFT

(17)
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The second step of the phase reconstruction procedure is
to remove the linear phase term from (17). The most
reliable method of doing this is with a direct measurement of

. The interferometer is calibrated by recording a spectral
interferogram for the pair of pulses without imparting the
spectral shear. In this case, the interfered pulses are identical
and therefore the only phase contribution is . The linear
phase obtained from calibration is simply subtracted from

.
The third step is to reconstruct the spectral phase from the

spectral phase difference. To simplify notation, we define the
phase difference as

(18)

is reconstructed from by concatenating the
spectral phase difference. In practice, there is usually an
unknown constant phase associated with which gives
a linear contribution to the reconstructed spectral phase and
results in an unimportant time-shift of the pulse. Although
the time-shift is unimportant, we usually shift the entire phase
difference data set by before reconstructing
so that the linear contribution is minimal.

Concatenation returns a sampled spectral phase at inter-
vals of across the spectrum. The spectral phase at some
frequency, say , is set equal to zero so that

. The spectral phase for all frequencies that are
multiples of the spectral shear away from follow in this
fashion:

...

...

(19)

By simply adding up the phase differences, we reconstruct
the phase for frequencies separated by the spectral shear. By
virtue of the Sampling Theorem discussed in Section I, this
is sufficient information for reconstructing the electric field
exactly.

If the shear is small relative to the structure of the spectral
phase, the phase difference is approximately the first derivative
of the spectral phase

(20)

Accordingly, the spectral phase can be reconstructed by inte-
gration

(21)

There is little advantage to the integration approximation since
the sampled phase returned from concatenation is adequate for
reconstructing the electric field. It provides, however, a simple

Fig. 4. The SPIDER apparatus. Two pulse replicas that are delayed with
respect to one another by� are frequency mixed with a chirped pulse in
a nonlinear crystal. Each pulse replica is frequency mixed with a different
time slice, and hence spectral slice, of the stretched pulse, and, consequently,
the upconverted pulses are spectrally sheared. The resulting interferogram is
resolved with a spectrometer.

means of averaging over the many data sets available in a sin-
gle interferogram. The spectral step size of the data is usually
much smaller than the shear, and, consequently, concatenation
uses only a subset of the available data. Integration, in contrast,
uses all of the data. Of course, one can construct many sets
of the sampled spectral phase by starting the concatenation at
different frequencies, e.g., then
using each sampled set to reconstruct the analytic signal, and
finally averaging the reconstructed analytic signals in the time
domain.

The final step to reconstructing the electric field is to
determine the spectral amplitude. The simplest way to do this
is from a separate measurement of . Note that some
applications, such as adaptive phase compensation, need only

and therefore do not require a separate measurement
of the pulse spectrum.

IV. THE SPIDER APPARATUS

A. Generating the Spectral Shear with
Nonlinear Frequency Mixing

The SPIDER apparatus is shown in Fig. 4. A test pair of
pulses that are both identical to the input pulse and are delayed
in time with respect to one another by are upconverted
with a stretched pulse in a nonlinear crystal. A spectrometer
resolves the frequency-mixed signal. The stretched pulse is
severely chirped and consequently each pulse in the test pair is
upconverted with a different frequency in the stretched pulse.
As a result, the upconverted pulses are spectrally sheared with
respect to one another. That is, nonlinear frequency mixing
simulates a linear temporal phase modulator.

To quantify the shear, consider the action of a pulse stretcher
in the form of a dispersive delay line. An ideal stretcher is
a time-stationary quadratic spectral phase filter with transfer
function

(22)

The analytic signal of the stretched pulse is

(23)

For large enough for all over which the
input pulse is nonzero. In this case, the analytic signal of the
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(a)

(b)

Fig. 5. (a) The fundamental and (b) upconverted spectra of pulses from
our CW mode-locked Ti:sapphire oscillator. The upconverted pulses are fre-
quency-shifted replicas of the input pulse. Since each is frequency mixed with
a different quasi-monochromatic slice of a stretched pulse, the upconverted
pulses are frequency sheared by
.

stretched pulse is simply

(24)

For large quadratic dispersion, the pulse stretcher maps fre-
quency into time.

As long as the large stretching approximation defined by
(24) is satisfied, each pulse in the test pair is upconverted with
a quasi-CW frequency slice of the stretched pulse. Thus, if
the bandwidth of the nonlinear crystal is sufficiently broad,
the analytic signals of the upconverted pulses are

(25)

and

(26)

where and . Note that is
the value of the quadratic dispersion at the frequency with
which the leading pulse is upconverted, in this case

for the stretcher arrangement described in the following
section). Indeed, upconversion generates the spectral shear by
simulating the linear temporal phase modulator of (7).

The spectra of the sheared pulses are centered near twice the
carrier frequency of the input pulse, i.e., . Fig. 5 shows the
spectra of the input pulse and the upconverted pulses from a
SPIDER device for a CW mode-locked Ti:sapphire oscillator.

Fig. 6. (a) The experimental SPIDER interferogram recorded when the
pulses of Fig. 5 are allowed to interfere. (b) The expanded view reveals that
the fringes are nominally spaced at1=� as expected.

When the sheared pulses are interfered, the frequency-resolved
signal is related to the input pulse by

(27)

The experimental interferogram for the pulses of Fig. 5 is
shown in Fig. 6. This interferogram is a frequency-shifted
version of (10) and consequently the spectral phase is retrieved
following the procedure of Section III-B.

B. Designing the SPIDER Apparatus

The two key parameters to be determined when designing
a SPIDER apparatus are the spectral shearand the relative
delay between the pulses in the test pair. These are not
independent since . Moreover, there are individual
constraints on both parameters. For instance, since the fringes
of the spectral interferogram are nominally spaced at

should not be so large that the fringes are not resolvable
with the available spectrometer. But,should not be so small
that the data inversion routine cannot separate the ac terms
from the dc term. Likewise, should not be so large that the
phase sampling interval is larger than the Nyquist limit but
it should not be so small that the spectral phase difference is
imperceptible. The stretcher dispersion is also constrained.
It must be sufficiently large to ensure that each pulse in the
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test pair is upconverted with a quasi-CW slice of the stretched
pulse. Of course, the required dispersion depends upon the
spectral width and duration of the input pulse.

For example, consider an input pulse typical of an ultrafast
Ti:sapphire laser system, with spectral width
THz centered at THz ( nm,
nm). Near transform limit, this pulse has a duration of
fs. For large stretching, the duration of the stretched pulse is

. If the duration of the input pulse is , then a
stretched pulse of duration ensures that each time
slice of the stretched pulse has a range of frequencies no larger
than . In this example, since the input pulse might
be longer than transform limit, the stretched pulse should be,
say, 20 ps long . The spectrometer must
have adequate resolution to resolve the fringes at . If
the spectrometer resolution is, say,
THz (0.5 Å at nm), the delay must be less than 5
ps so that the spectrometer can resolve more than two points
per fringe. The effects of uncorrelated noise diminish as the
square root of the number of points per fringe, so one should
choose optimally a delay less than 5 ps. On the other hand,
the delay cannot be arbitrarily small because the inversion
relies on the pulses being sufficiently separated in time to
distinguish the ac and dc terms of the interferogram. Since the
ac and dc terms have roughly the same duration as the input
pulse, we usually choose the delay to be at least ten times the
transform limit. Erring on the safe side, a delay of one to two
picoseconds, to ps, resulting in five to ten points per
fringe, is adequate in this example. This gives a spectral shear

of 5%–10% of the input pulse spectral width,
which satisfies the sampling criterion.

To generate the stretched pulse, we arrange a pair of
diffraction gratings as a conventional compressor [14]. A prism
pair or even simply a block of highly dispersive glass are
suitable for ultrashort pulses with bandwidths of
THz but are not practical for most applications. The gratings
in our device are ruled with 1200 lines/mm. For the example
pulse given above, these gratings allow for a compact geom-
etry. A tandem pair of 1200 lines/mm gratings separated by
approximately 10 cm will stretch the example pulse to 20 ps.

To generate the test pair of pulses, we use either the two
reflections from an uncoated solid etalon or a Michelson
interferometer. Interferometric accuracy unavoidably requires
interferometric stability in since jitter between the test pulses
can destroy all phase information. The source of most jitter
is mechanical vibrations of frequencies of a few hundred
hertz and less. A solid etalon is immune to these vibrations
while a Michelson requires at least passive stabilization. The
beamsplitter and both mirrors of our Michelson are mounted
directly to a solid block of aluminum and the interferometer
is enclosed in a plexiglass box. This passive stabilization is
more than adequate for the laboratory environment. Of course,
if the apparatus is operated single-shot, vibrations are not
important. Note that the stretched pulse does not interfere with
the test pair and therefore these relative paths do not need to
be stabilized.

Both types of interferometers can be configured for low
dispersion. For instance, a 150-m fused silica solid etalon

Fig. 7. Cross sections of the phase mismatch function for a 250-�m Type
II BBO crystal. The crystal is cut for phase matching of�o = 840 nm
and �e = 840 nm (� = 40:250). The bandwidth of the ordinary axis is
considerably broader than that of the extraordinary axis. Consequently, the
test pair of pulses should be polarized along the ordinary axis.

provides a 1.5-ps delay with minimal dispersion. Similarly,
a thin beamsplitter imparts little dispersion in a Michelson (a
pellicle can be used for extremely broad-band pulses). In either
case, the spectral phase imparted by the substrate material
is easily measured using conventional spectral interferometry
[15], [16] for which the SPIDER apparatus is easily adapted.

The test pair of pulses is frequency mixed with the stretched
pulse in a nonlinear crystal. The bandwidth of the nonlinear
crystal must be sufficiently large to upconvert all of the
frequencies of the input pulse without imparting additional
spectral phase. Moreover, the upconverted signal should not
contain terms arising from the upconversion of the short pulses
with themselves or from the stretched pulse with itself. Our
apparatus uses a 250-m type II BBO crystal. The type II
crystal simplifies the geometry since the signal is background-
free even if the test pair is collinear with the stretched pulse.
Calculated cross sections of the phase-matching function along
the ordinary and extraordinary axes of our crystal are shown in
Fig. 7. The bandwidth along the ordinary axis is substantially
larger than that along the extraordinary axes. Consequently, the
test pair of pulses should be polarized along the former and
the stretched pulse should be polarized along the latter. We
use a zeroth-order half-wave plate to rotate the polarization of
either the stretched pulse or the test pair, but a pair of mirrors
will also suffice.

A photodiode at the output of a scanning monochromator
or a CCD array at the output of a spectrometer is used to
record the spectral interferogram. Our monochromator has a
resolution of 0.5Å and our spectrometer has a resolution of
approximately 1Å. Either instrument resolves the fringes at

for a delay of two picoseconds.
We measured the interferogram of Fig. 6 using our scanning

monochromator. The time-dependent intensity and phase of
these pulses is shown in Fig. 8 along with a comparison of the
reconstructed and measured autocorrelation. The agreement
between the reconstructed and measured autocorrelation is
excellent. As an independent test, we also characterized the
pulses after they propagated through a known amount of
dispersion. The results of this test are shown in Fig. 9. Again,
the agreement between the measured and predicted pulses is
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(a)

(b)

Fig. 8. (a) The time-dependent intensity and phase reconstructed from the
SPIDER interferogram of Fig. 6. (b) The measured (boxes) and reconstructed
(solid line) autocorrelation for the pulses of (a).

Fig. 9. The spectral phase returned by SPIDER for the pulses of Fig. 8
(squares) and for the same pulses after propagation through a dispersive
piece of glass (triangles). The spectral phase predicted for the pulses upon
propagation through the glass is also shown (circles).

excellent. Numerical simulations of SPIDER interferograms
for more complicated pulses, such as those with phase discon-
tinuities, show that the technique is easily capable of resolving
pulse structure on the order of the spectrometer resolution.

C. Calibrating the Apparatus

The SPIDER apparatus must be calibrated. Since there are
no moving components, this needs to be done only once at the
initial setup. To take full advantage of the extreme sensitivity
to phase offered by SPIDER, parts of the calibration need to be
performed with interferometric accuracy. There are three steps
to fully calibrate the device. First, the linear phase term
is determined from measurement of an interferogram without

spectral shear. Second, the spectral shearis determined
either by direct measurement or simply by calculating the
stretcher dispersion. Third, the frequencies of the quasi-CW
slices of the stretched pulse with which each of the pulses in
the test pair are upconverted are determined by comparing a
SPIDER interferogram with the fundamental spectrum of the
input pulse. This section addresses the details of each step of
the calibration, provides estimates of the required accuracy,
and points out self-consistency checks that allow the user
to make certain that the apparatus is aligned and operating
correctly.

The first and most important step of the calibration proce-
dure is to determine the linear phase. The most reliable
means of doing this is to directly measure thecontribution
to the SPIDER interferogram. This is readily accomplished
by recording the second-harmonic signal generated with the
stretched pulse blocked and the polarization of the test pair of
pulses rotated by 45(or, equivalently, the Type II nonlinear
crystal rotated by 45). Since these two pulses are identical,
that is, they are not spectrally sheared, the only phase contri-
bution to the interferogram is the linear term regardless of
the phase of the input pulse. The second-harmonic calibration
interferogram is analyzed in the same manner as the SPIDER
interferogram up to concatenation. The resulting phase is the
desired term and is saved as a calibration trace so that it
can later be subtracted from SPIDER data. Directly measuring
the linear phase contribution is extremely accurate since the
calibration uses the test pair of pulses which propagate through
the entire SPIDER apparatus, and the same spectrometer and
inversion procedure used for SPIDER data. Furthermore, this
calibration procedure reduces the effects of dispersion in the
device. For instance, it usually happens that the two pulses
in the test pair are not identical. This is because one of
the pulses passes through the substrate of the beamsplitter in
the Michelson or the substrate of the etalon while the other
does not. Approximately half of this effect is removed in the
calibration since the spectral phase difference between the
second-harmonic pulses is roughly half of the spectral phase
difference between the fundamental pulses. Consequently, the
calibration procedure eliminates half of the dispersive effects
of the etalon or Michelson beamsplitter, making SPIDER a
naturally low-dispersion device.

The second step of the calibration is to determine the spec-
tral shear . If a Michelson interferometer is used, the spectral
shear is easily measured by blocking each of the test pulses one
at a time and recording the individual upconverted spectra as
in Fig. 5. If an etalon is used, the procedure is more involved.
Since the spectral shear is a function of the separation of the
test pair of pulses and the dispersion of the stretcher, i.e.,

, it is necessary to determine and . is
determined by measuring the slope of the linear spectral phase
returned from the first step of the calibration. The simplest,
and arguably most accurate, method for determiningis by
calculation. For instance, for a conventional tandem pair of
gratings, the dispersion is determined by the separation of the
gratings and the angle of incidence of the input beam [14], both
of which can be precisely measured. The dispersion is sensitive
to wavelength and therefore it is important to calculatefor
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a wavelength near the frequencies of the stretched pulse with
which the test pair are to be upconverted. Because the stretcher
typically stretches the pulse by a factor of several hundred, the
spectral phase of the input pulse and the material dispersion
of beamsplitters, lenses, etc., are negligible.

The accuracy with which the shear should be determined
can be estimated by accounting for spectral shear errorin
the approximate expression for the spectral phase given in (21)

(28)

The fractional error in the reconstructed phase caused by error
in the calibration of the spectral shear is simply equal to the
fractional error of the shear. For instance, a 1% calibration
error results in a 1% error of the reconstructed spectral phase.
Since the spectral shear is determined from the separation of
the test pair of pulses and the dispersion of the stretcher, the
error in determining each of these two parameters should be
minimized. can be determined from the slope of the linear
spectral phase returned from the first step of the calibration
with error of less than 1%. can be calculated with similar
accuracy.

The third and final step of the calibration procedure is to
determine the quasi-CW frequencies of the stretched pulse
with which the test pair are upconverted. If a Michelson
interferometer generates the test pair, the quasi-CW frequency
with which each pulse is upconverted is readily determined
by blocking one arm of the interferometer and recorded the
resulting upconverted spectrum. is determined by simply
comparing the upconverted spectrum with the fundamental
spectrum. In practice, we make the comparison by numerically
cross-correlating the two data sets. This also provides a
straightforward consistency check that the apparatus is set up
properly. The upconverted and fundamental spectra should be
identical with the exception that they are shifted in frequency
with respect to one another. If the spectra are not identical,
then the apparatus requires adjustment.

If an etalon is used to generate the test pair,can be deter-
mined from the SPIDER data and the fundamental spectrum of
the input pulse. The magnitude of the positive ac portion of the
interferogram is proportional to
[see (13)]. To determine , the product ,
constructed from the fundamental spectrum and knowledge of

, is compared to . Once again,
this comparison also provides a straightforward consistency
check of the apparatus since the products should be frequency
shifted with respect to one another but otherwise identical.
Note that since depends upon it may be necessary to
iterate between the second and third steps of the calibration
procedure in order to obtain the most precise values of these
two quantities. But this procedure needs to be done only once
at the initial setup of the apparatus.

Moreover, error in determining results in little error
in the reconstructed spectral phase. In fact, to first order, it
introduces no error at all in the reconstructed spectral phase.
To see this, consider a pulse whose actual spectral phase
is . If the error in is , the

reconstructed spectral phase is

(29)

The error that is linear with frequency is an error in the
determination of the time of arrival of the input pulse, while
the constant error is in the determination of the absolute phase
of the input pulse. SPIDER does not return either of these
quantities and, consequently, the errors are meaningless. The
error in is meaningful if the actual spectral phase has terms
of order greater than quadratic. But, a similar argument to that
of (29) reveals that the tolerance on is not stringent—if
the spectral phase is dominated by cubic phase, an error in
of 5% of the test pulse bandwidth results in an error of the
reconstructed spectral phase of less than 1%.

V. SUMMARY

Spectral phase interferometry for direct electric-field recon-
struction (SPIDER) is a simple and reliable interferometric
technique for measuring the electric field underlying an ul-
trashort optical pulse. The data inversion algorithm is direct
(noniterative), and the amount of data is much less than that
required by spectrographic and tomographic techniques. The
SPIDER apparatus has no moving components. Moreover,
since SPIDER uses a Type II nonlinear crystal, the apparatus
is entirely collinear and background-free. Also, there is no
ambiguity as to the direction of time of the reconstructed pulse
even using a lowest order nonlinearity.

We presented in this paper experimental examples of recon-
structed pulses from a CW mode-locked Ti:sapphire oscillator
[17]. We have also used a similar SPIDER device to measure
pulses from an amplified Ti:sapphire system, and, by using
nonlinear downconversion instead of upconversion, we have
characterized the pulses at the second harmonic of this system
[18]. SPIDER has also been used in the feedback loop for
adaptive phase control of amplified pulses [19]. We are cur-
rently developing both a device with real-time updating to take
advantage of the rapid data inversion algorithm of SPIDER,
and, since SPIDER requires only 1-D data collection for pulse
reconstruction at a single spatial coordinate, a device with a
2-D CCD camera for measuring the electric field as a function
of both space and time.
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