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Self-Referencing Spectral Interferometry for
Measuring Ultrashort Optical Pulses

Chris laconis and lan A. Walmsley

(Invited Paper)

Abstract—This paper describes a novel self-referencing inter- between pairs of spectral components of the input pulse [8].
ferometric method for measuring the time-dependent intensity - Similarly, direct optical spectral phase measurement (DOSPM)
and phase of ultrashort optical pulses. The technique, spectral |91 yses a nonlinear time gate to record the interference beats.
phase interferometry for direct electric-field reconstruction (SPI- . . .

DER), measures the interference between a pair of spectrally Because_ data _coIIectlon reguwes either a fast_ detector or a
sheared replicas of the input pulse. Direct (noniterative) inversion fast nonlinear time gate, neither of these techniques has seen
of the interferogram yields the electric field of the input pulse widespread use.

without ambiguity. The interferogram, which is solely a function This paper describes an interferometric method for char-

of frequency, is resolved with a spectrometer and recorded with acterizing ultrashort optical pulses that does not rely on a

a slow detector. Moreover, the geometry is entirely collinear and fast detect fast fi ¢ d stil direct dat
requires no moving components. This paper describes in detail ast aetector or a fast ume gate and Sull uses direct data

the principle of operation, apparatus, and calibration of SPIDER  inversion. The technique, spectral phase interferometry for
and gives experimental examples of reconstructed pulses. direct electric-field reconstruction (SPIDER), is a specific
Index Terms—Pulse characterization, pulse measurements, implementation of SfpeCtral shearing intgrferometry [10], [11]'_
pu|se reconstruction’ ultrafast optics_ SPIDER uses non“near frequency m|X|ng to generate a pall’
of identical but frequency-sheared replicas of the input pulse.
The interference between this pair of pulses is recorded easily
with a spectrometer followed by an integrating (i.e., slow)
HERE ARE three known strategies for measuring thdetector. Moreover, the geometry is entirely collinear, the
electric field of optical pulses; spectrography, tomograpparatus requires no moving components, and the direct
phy, and interferometry [1], [2]. The most common of thesénversion routine is simple, rapid, and robust. Section Il of this
spectrographic techniques, such as frequency-resolved optaper describes the relationship between the electric field that
gating (FROG) [3], temporal analysis of spectral componerdgscribes an optical pulse and its analytic signal and defines the
(TASC) [4], frequency-domain phase measurements (FDPk@lated quantities such as the time-dependent intensity, time-
[5], and spectrally and temporally resolved upconversion tectlependent phase, and absolute phase. Section Il describes the
nigue (STRUT) [6], measure a two-dimensional (2-D) reprgrinciples of spectral shearing interferometry and details the
sentation of the one-dimensional (1-D) field and consequentigita inversion routine used with SPIDER. Finally, Section IV
require the collection of a relatively large amount of datalescribes the components and calibration of the SPIDER
Moreover, unless the pulse has a simple structure, spectrograparatus and provides examples of pulses reconstructed from
phy requires sophisticated iterative data inversion algorithragperimental data.
to reconstruct the field. Tomography also requires a large 2-D
data set, b_ut_dat_a _inversion is_direct (noniterative_). In practici?_, DESCRIBING AN OPTICAL PULSE BY ITS ANALYTIC SIGNAL
however, it is difficult to fabricate a tomographic apparatus
with a bandwidth of several terahertz and, consequently,The real electric fielde(¢) underlying an optical pulse
tomography has not been applied to ultrafast pulses, althoughtwice the real part of its analytic signal(t): () =
tomographic-like methods that require iterative inversion hagex Re[£(t)]. The analytic signal is the single-sided inverse
been demonstrated [7]. Interferometry, in contrast, requirEgurier transform of the Fourier transform of the field
only a 1-D data set to reconstruct a 1-D field and uses =
direct data inversion to do so. Diels has demonstrated an E(t) I/ dw é(w) exp[—iwt] 1)
interferometric method that uses an ultrafast photodiode and 0
Schottky diode nonlinear mixer to record the beat noteghere

I. INTRODUCTION

o
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is complex and therefore can be expressed uniquely in terms % —
of an amplitude and phase N S (w;7)

E(t) = |E(t)| explipe(t)] explidho] exp[—iwot] 3) 2
where |E(¢)| is the time-dependent envelope; is the car- N (:Q) @\
rier frequency (usually chosen near the center of the pulse @J

spectrum),¢.(t) is the time-dependent phase, angl is the
absolute phase. The square of the enve|df{e)|? is the time-
dependent Intensity of the pU|S'e' The tme-dependenF ph@%e 1. A generalized spectral shearing interferometer. The input pulse is
accounts for the occurrence of different frequencies at differestit into two replicas at a beamsplitter. One replica is delayed by a linear

times, and the absolute phase specifies the position of Eﬁéctral phase modulator (upper path) and the other replica i;frequency shifted
y a linear temporal phase modulator (lower path). The filtered pulses are

Carr_'er relative to the envelope. recombined on the second beamsplitter and the resulting interferogram is
Since the pulse has no dc spectral component, the electeilved with a spectrometer.

field must have zero areaf™ dte(t) = 0. As a result,

the absolute phase of the pulse is fixed once the envelopgqy ency stationary filters, the output of which is unchanged
time-dependent phase, and carrier frequency are Spec'f'e_dgigarbitrary frequency shifts of the input. Filters from these

practice, though, unless the pulse duration is close t0 a singf, classes can be combined to synthesize a linear filter of
cycle, o changes dramatically in response to immeasurablypiirary response. Moreover, these are the only filters that

small changes in the envelope. Consequently, pulse characfgfye heen used to date in pulse-shape measurement and are
ization devices should strive to measure the absolute phasgiRscasiest to implement in practice.

if it were a free parameter. We note parenthetically that nonéthere are two additional important filter specializations:
of the pulse measurement techniques demonstrated to dgjfyitude-only and phase-only. These filters behave as their

including SPIDER, return the absolute phase. ~ names suggest; the former provides amplitude modulation
Th.e frequency representation of the analytic signal is théhile the later modulates only phase. An example of an
Fourier transform off(t) amplitude-only time-stationary filter is the spectrometer,
. o0 5 whose idealized transfer function is
Blw) = / At E(t) expliwt] = {E(SJ)’ 2 8} @) )
—eo ov= SHwiwe) = exp[—(w — we)?/(29%)] (6)
E(w) is often expressed as where w,. is the center frequency ang is the frequency

- 5 . . passband.S denotes that this filter is time-stationary and
E(w) = |E(w)| expligw(w)] expido] © e superscriptd indicates that it is an amplitude filter.
where|E(w)| is the spectral amplitudes,,(w) is the spectral Since even modest spectrometers have resolutions significantly
phase, and, is the absolute phase. The square of the spdeetter than a terahertz, they can easily resolve the spectral
tral amplitude|E(w)|? is the spectral intensity—the familiarintensity of ultrashort optical pulses. But, to measure phase,
quantity measured with a spectrometer—and the spectral phage needs at least two linear filters—one time-stationary
describes the relative phases of all the frequencies. and one frequency-stationary. Spectral shearing relies on an
To reconstruct the electric field, one need only measuirderferometric arrangement of such filters.
its Fourier transform for a finite set of frequencies. The A schematic spectral shearing interferometer is shown in
Whittaker—Shannon sampling theorem [12] asserts that, if thég. 1. The interferometer consists of in-parallel phase filters,
field has compact support in the time domain over a rangee linear temporal phase modulator and one linear spectral
N x At, then a sampling ofs(w) at the Nyquist frequency phase modulator, followed by a spectrometer. A beamsplitter
interval of 2 /N At is sufficient for reconstructing the analyticgenerates two replicas of the input pulse. One pulse replica
signal £(¢) and, consequently, the electric fied(t) exactly. passes through the temporal phase modulator and the other
passes through the spectral phase modulator. The filtered
IIl. SPIDER: A SPECTRAL SHEARING INTERFEROMETER pulses are recombined on a second beamsplitter and the
resulting signal is resolved with a spectrometer. Since the
A. The Principles of Spectral Shearing spectrometer is a time-stationary device, the key linear phase
filter is the frequency-stationary temporal phase modulator.
The temporal phase modulator shifts the spectrum of the input
@{se by. Its response function is

The fastest photodetectors cannot directly measure the
velope, much less the carrier, of ultrafast optical pulses. It
possible, though, to use slow photodetectors, provided a
of linear filters of known response functions are available. NP (#:,9Q) = exp[—iQ] (7)

One simply records the output energy as a function of thenereN denotes that this filter is time nonstationary, the

filter parameters (such as the center of the passband ot a R o ) .
: . : superscripf” indicates that it is a phase filter, and the subscript
spectrometer, for instance). Two classes of linear filter afe o O . .
d<,peC|f|es that the phase modulation is linear. Likewise, the

both necessary and sufficient for measuring the electric fiel . .
X o . . . . : eR‘ransfer function of the spectral phase modulator is
of optical pulses: time stationary filters, in which the time o

incidence of the input pulse does not affect the output, and SP(w;T) = explitw]. (8)
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Fig. 2. Simulated spectral interferogram of the interference of a pair &fg. 3. The Fourier transform of the interferogram of Fig. 2. The Fourier

spectrally sheared pulses. The pulses are delayed with respect to one andtagsform is complex but only the real part is shown. The desired phase

by 7 and, consequently, the nominal fringe spacin@sig 7. Spectral phase of information is contained in the component centered AearThis component

the input pulse manifests itself as variations from the nominal fringe spacirig.isolated by multiplying the Fourier transform (both the real and imaginary
guadratures) by a filter function centeredat.

This filter simply delays an input pulse by. The signal and
obtained after the combined pulses are passed through thep(+ac)(, ) = | E(w. — Q)E(w.)| exp[—i(d.(we — Q)
spectrometer is

) — duw(we))]- (14)
D(wg; Q1) = / dw‘gA(w — We) The dc portion of the interferogram [see (12)] is the sum of
the individual spectra of the pulses and contains no phase
. { [/ dw' NP (W' — w)E(w/)} information. The ac terms [see (13) and (14)] are the result of
the interference and contain all of the phase information.

2 There are three steps for reconstructing the spectral phase

) from the interferogram. First, isolate one of the ac terms, and

_ ) ) henceg,.(w. — Q) — ¢ (w.) — Tw,., with a Fourier transform
Since the spectral shift and the temporal delay are fixed, thgq filter technique. Second, remove. by subtracting a

only variable is the center frequency of the spectrometqfjipration phase. Third, reconstrust (w.) by concatenating
Furthermore, the spectrometer usually has a passband M spectral phase difference.

the square of its transfer function is reliably approximated bygorithm introduced by Takedat al. [13] in which the
a delta function|S*(w — w.)? ~ §(w — w.), and the signal gata is Fourier transformed with respect to the spectrome-

+ST @B}

s simply ter frequency, filtered, and inverse transformed. The Fourier
D(w,) = |E(we — Q) + |E(w))? transform is
+ 2| E(we — Q) B(we)| cos[p(we — £2) D(t) = FT{D“)(w.);w, — t}
~ dolwe) — 7wl (10) +FT{D (o) we — t 47

D(w,.) is a standard shearing interferogram consisting of +FT{D(+ )(we); we —t—r1}. (15)
fringes nominally spaced in frequency &t/7. A simulated This time series has components centered mear =7 as
interferogram is shown in Fig. 2. The spectral phase of tlweell as a component at = 0, as illustrated in Fig. 3. The
input pulse, in the form of the phase differentg(w. — ) — component at = 0 is the Fourier transform of the dc portion
¢.(w.) between two different frequency components of thef the interferogram. Thé = -+ components arise from the
test pulse, manifests itself as perturbations from the nomirfdurier transforms of the ac portions of the interferogram. If

fringe spacing. 7 is sufficiently large, the¢ = 0 and &=~ components are well
separated in time and, as a result, the unwanted dc and negative
B. Inverting the Data ac components can be removed by filtering. For this purpose,

The spectral phase is extracted from the interferogram W use a fourth-order super GaussiBiiit) of full width =

(10) by analyzing the relative positions of the fringes. T8entered at = 7. The filtered signal

simplify the analysis, we write the interferogram as DY () = H(t — 7)D(t) = FT{D™H*)(w.);w. — t — 7}
D(w.) = D9 (w,) + exp[—irw.] D (w,) (16)
+ expliTw,] D(+a‘3>(wc) (11) is simply the Fourier transform of the positive ac portion
(t = +7) of the interferogram. The spectral phase difference
where is the argument of the inverse transformofi*er (¢)
DU (w.) = |E(we = Q) + [E(w.)? (12)  Pulwe) = Pulwe — Q) + Tw. = arg[DH9 (w,)]
D2 (w,) = |E(we — Q) E(w.)] expli( pos(we — Q) = arg[IFT{ D™ (); ¢t — w,}].

— Pu(we))] (13) 17)
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The second step of the phase reconstruction procedure is N x®

to remove the linear phase termv, from (17). The most

reliable method of doing this is with a direct measurement of -
Tw.. The interferometer is calibrated by recording a spectral _/L __/\_ *
interferogram for the pair of pulses without imparting the -

) ; ) ) T D
spectral shear. In this case, the interfered pulses are identical (a)c)
and therefore the only phase contributionris.. The linear Fig. 4. The SPIDER apparatus. Two pulse replicas that are delayed with

phase obtained from calibration is simply subtracted froraspect to one another by are frequency mixed with a chirped pulse in

é ( ) — ¢ ( _ Q) + a nonlinear crystal. Each pulse replica is frequency mixed with a different
w\We it We . TWe- time slice, and hence spectral slice, of the stretched pulse, and, consequently,
The third step is to reconstruct the spectral phase from ti@ upconverted pulses are spectrally sheared. The resulting interferogram is

spectral phase difference. To simplify notation, we define tisolved with a spectrometer.
phase difference ag(w.)

B(we) = polwe) — du(we — ). (18) ™means of averaging over the many da_ta sets availabl_e in a sin-
gle interferogram. The spectral step size of the data is usually
¢.(we) is reconstructed fromd(w.) by concatenating the much smaller than the shear, and, consequently, concatenation
spectral phase difference. In practice, there is usually ases only a subset of the available data. Integration, in contrast,
unknown constant phaglg associated witl#(w..) which gives uses all of the data. Of course, one can construct many sets
a linear contribution to the reconstructed spectral phase avicthe sampled spectral phase by starting the concatenation at
results in an unimportant time-shift of the pulse. AlthougHifferent frequencies, e.Quo, wo + 6w, wo + 26w, .. ., then
the time-shift is unimportant, we usually shift the entire phaseing each sampled set to reconstruct the analytic signal, and
difference data set by-6(w,) before reconstructing,.(w.) finally averaging the reconstructed analytic signals in the time
so that the linear contribution is minimal. domain.
Concatenation returns a sampled spectral phase at interfhe final step to reconstructing the electric field is to

vals of Q across the spectrum. The spectral phase at sodeiermine the spectral amplitude. The simplest way to do this

frequency, saywy, is set equal to zero so that (wy — Iis from a separate measurement|éf(w.)|. Note that some

) = —6(wo). The spectral phase for all frequencies that ampplications, such as adaptive phase compensation, need only
multiples of the spectral shear away frang follow in this ¢.(w) and therefore do not require a separate measurement
fashion: of the pulse spectrum.

IV. THE SPIDER APPARATUS

(f)w(wo — 29) = —9((4)0 — Q) — 9(&)0)
Pulwo — Q) = —6(wo) A. Generating the Spectral Shear with
o (wo) = 0 (19) Nonlinear Frequency Mixing
Puo(wo + ) = 6wy + Q) The SPIDER apparatus is shown in Fig. 4. A test pair of
bl + 29) = Bwo + 29) + B(wo + Q) pulses that are both identical to the input pulse and are delayed
w(wo = 6(wo wo

in time with respect to one another by are upconverted
with a stretched pulse in a nonlinear crystal. A spectrometer
resolves the frequency-mixed signal. The stretched pulse is
By simply adding up the phase differences, we reconstrszverely chirped and consequently each pulse in the test pair is
the phase for frequencies separated by the spectral shearupgonverted with a different frequency in the stretched pulse.
virtue of the Sampling Theorem discussed in Section |, thiss a result, the upconverted pulses are spectrally sheared with
is sufficient information for reconstructing the electric fieldespect to one another. That is, nonlinear frequency mixing
exactly. simulates a linear temporal phase modulator.

If the shear is small relative to the structure of the spectral To quantify the shear, consider the action of a pulse stretcher
phase, the phase difference is approximately the first derivatimethe form of a dispersive delay line. An ideal stretcher is

of the spectral phase a time-stationary quadratic spectral phase filter with transfer
o (ws) function
o) = du(we) — o (w, — Q) = QL7 2 ~ " 2
9((")) ¢ (w ) ¢ (w ) dwe (20) S:(w) — otizd (w—wo)® (22)
Accordingly, the spectral phase can be reconstructed by inﬁie analytic signal of the stretched pulse is

gration
Estretch(t) = Eln(t) ® S;)(t)
s 1 e it

1
Plw.) ~ —/ dw. H(w..). (22) e
& o e '3 / dt' Ein(t)e™" 257 57 (28)

There is little advantage to the integration approximation since
the sampled phase returned from concatenation is adequateFar large enoughy”, 2/2¢"” ~ 0 for all ¢ over which the
reconstructing the electric field. It provides, however, a simpieput pulse is nonzero. In this case, the analytic signal of the
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®) Fig. 6. (a) The experimental SPIDER interferogram recorded when the
Fig. 5. (a) The fundamental and (b) upconverted spectra of pulses frgulses of Fig. 5 are allowed to interfere. (b) The expanded view reveals that
our CW mode-locked Ti:sapphire oscillator. The upconverted pulses are ftee fringes are nominally spaced Btr as expected.
guency-shifted replicas of the input pulse. Since each is frequency mixed with
a different quasi-monochromatic slice of a stretched pulse, the upconverted

pulses are frequency sheared Qy When the sheared pulses are interfered, the frequency-resolved
signal is related to the input pulse by

stretched pulse is simply D(w.) = |E1(w )+E2(w |2

42 o - -
Bavesan®) ™37 [ at () = |Binl(we = &) = QP + [Bunlwe — o)
g t 2B =) ~ Dl =)
e e <“ St ¢_> @4 X coslu((we — &) = Q) = dulwe — o) — rwel.

For large quadratic dispersion, the pulse stretcher maps fre- (27)

quency into time. _ o _ The experimental interferogram for the pulses of Fig. 5 is
As long as the large stretching approximation defined Ryown in Fig. 6. This interferogram is a frequency-shifted

(24) is satisfied, each pulse in the test pair is upconverted WifBrsjon of (10) and consequently the spectral phase is retrieved
a quasi-CW frequency slice of the stretched pulse. Thus,f#llowing the procedure of Section IlI-B.

the bandwidth of the nonlinear crystal is sufficiently broad,

the analytic signals of the upconverted pulses are B. Designing the SPIDER Apparatus
E1(t) X Ein(t) Bstreten(t) & Ein(t)e ™l T4t (25) The two key parameters to be determined when designing
and a SPIDER apparatus are the spectral sieand the relative

delay between the pulses in the test pairThese are not
independent sinc® = —7/¢”. Moreover, there are individual
wherew’ = wg — 2 and 2 = —7/¢”. Note that¢” is constraints on both parameters. For instance, since the fringes
the value of the quadratic dispersion at the frequency witi the spectral interferogram are nominally space®atr,
which the leading pulse is upconverted, in this cas€¢” < 7 should not be so large that the fringes are not resolvable
0 for the stretcher arrangement described in the followingith the available spectrometer. Butshould not be so small
section). Indeed, upconversion generates the spectral sheathlay the data inversion routine cannot separate the ac terms
simulating the linear temporal phase modulator of (7). from the dc term. Likewise{2 should not be so large that the
The spectra of the sheared pulses are centered near twicepth@se sampling interval is larger than the Nyquist limit but
carrier frequency of the input pulse, i.8w,. Fig. 5 shows the it should not be so small that the spectral phase difference is
spectra of the input pulse and the upconverted pulses fronimgperceptible. The stretcher dispersighis also constrained.
SPIDER device for a CW mode-locked Ti:sapphire oscillatolt must be sufficiently large to ensure that each pulse in the

Eg(t) X Ein(t - T)Estretch ~ Ein(t - T)C_iw/(t - 7_) (26)
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test pair is upconverted with a quasi-CW slice of the stretched 1
pulse. Of course, the required dispersion depends upon the
spectral widthAw and durationAt of the input pulse.

For example, consider an input pulse typical of an ultrafast
Ti:sapphire laser system, with spectral widdw = 27 x 10
THz centered abg = 27 x 375 THz (AA & 21 nm, Ao = 800
nm). Near transform limit, this pulse has a duration\sf~ 50 02
fs. For large stretching, the duration of the stretched pulse is
T =~ Awg¢”. If the duration of the input pulse iat¢, then a 750 800 850 900
stretched pulse of duratiotD0 x At ensures that each time Xoo (nm)
slice of the stretched pulse has a range of frequencies no larger ’
than Aw/100. In this example, since the input pulse might

be longer than transform limit, the stretched pulse should [@g: 7- Cross sections of the phase mismatch function for &,280Fype
9 P II'BBO crystal. The crystal is cut for phase matching bf = 840 nm

say, 20 ps longT = 400 x At). The spegtrometer MUStang A, =840 nm (6 = 40.25%). The bandwidth of the ordinary axis is
have adequate resolution to resolve the fringef7atr. If considerably broader than that of the extraordinary axis. Consequently, the

the spectrometer resolution is, say= Aw/100 = 27 x 0.1 test pair of pulses should be polarized along the ordinary axis.
THz (0.5,& at A = 400 nm), the delayr must be less than 5
ps so that the spectrometer can resolve more than two points
per fringe. The effects of uncorrelated noise diminish as tipeovides a 1.5-ps delay with minimal dispersion. Similarly,
square root of the number of points per fringe, so one showdhin beamsplitter imparts little dispersion in a Michelson (a
choose optimally a delay less than 5 ps. On the other hapellicle can be used for extremely broad-band pulses). In either
the delay cannot be arbitrarily small because the inversioase, the spectral phase imparted by the substrate material
relies on the pulses being sufficiently separated in time i® easily measured using conventional spectral interferometry
distinguish the ac and dc terms of the interferogram. Since tfi&], [16] for which the SPIDER apparatus is easily adapted.
ac and dc terms have roughly the same duration as the inpuThe test pair of pulses is frequency mixed with the stretched
pulse, we usually choose the delay to be at least ten times fhdse in a nonlinear crystal. The bandwidth of the nonlinear
transform limit. Erring on the safe side, a delay of one to twerystal must be sufficiently large to upconvert all of the
picosecondsy = 1 to 2 ps, resulting in five to ten points perfrequencies of the input pulse without imparting additional
fringe, is adequate in this example. This gives a spectral shepectral phase. Moreover, the upconverted signal should not
Q = Awr/T of 5%-10% of the input pulse spectral widthcontain terms arising from the upconversion of the short pulses
which satisfies the sampling criterion. with themselves or from the stretched pulse with itself. Our
To generate the stretched pulse, we arrange a pair afparatus uses a 2%0n type Il BBO crystal. The type I
diffraction gratings as a conventional compressor [14]. A prisorystal simplifies the geometry since the signal is background-
pair or even simply a block of highly dispersive glass arigee even if the test pair is collinear with the stretched pulse.
suitable for ultrashort pulses with bandwidthsxb > 27 x25 Calculated cross sections of the phase-matching function along
THz but are not practical for most applications. The gratingke ordinary and extraordinary axes of our crystal are shown in
in our device are ruled with 1200 lines/mm. For the exampleg. 7. The bandwidth along the ordinary axis is substantially
pulse given above, these gratings allow for a compact geolarger than that along the extraordinary axes. Consequently, the
etry. A tandem pair of 1200 lines/mm gratings separated Iwst pair of pulses should be polarized along the former and
approximately 10 cm will stretch the example pulse to 20 pthe stretched pulse should be polarized along the latter. We
To generate the test pair of pulses, we use either the twse a zeroth-order half-wave plate to rotate the polarization of
reflections from an uncoated solid etalon or a Michelsagither the stretched pulse or the test pair, but a pair of mirrors
interferometer. Interferometric accuracy unavoidably requiresll also suffice.
interferometric stability inr since jitter between the test pulses A photodiode at the output of a scanning monochromator
can destroy all phase information. The source of most jitter a CCD array at the output of a spectrometer is used to
is mechanical vibrations of frequencies of a few hundre@cord the spectral interferogram. Our monochromator has a
hertz and less. A solid etalon is immune to these vibrationssolution of 0.5 and our spectrometer has a resolution of
while a Michelson requires at least passive stabilization. Th@proximately 1A. Either instrument resolves the fringes at
beamsplitter and both mirrors of our Michelson are mountet /7 for a delay of two picoseconds.
directly to a solid block of aluminum and the interferometer We measured the interferogram of Fig. 6 using our scanning
is enclosed in a plexiglass box. This passive stabilization nsonochromator. The time-dependent intensity and phase of
more than adequate for the laboratory environment. Of courtieese pulses is shown in Fig. 8 along with a comparison of the
if the apparatus is operated single-shot, vibrations are metonstructed and measured autocorrelation. The agreement
important. Note that the stretched pulse does not interfere wiibtween the reconstructed and measured autocorrelation is
the test pair and therefore these relative paths do not needxaellent. As an independent test, we also characterized the
be stabilized. pulses after they propagated through a known amount of
Both types of interferometers can be configured for lowispersion. The results of this test are shown in Fig. 9. Again,
dispersion. For instance, a 150a fused silica solid etalon the agreement between the measured and predicted pulses is

0.8

0.6

0.4

Sinc* [ ARL/2]
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spectral shear. Second, the spectral sheais determined

= -4 g
g - é either by direct measurement or simply by calculating the
E -0 £ stretcher dispersion. Third, the frequencies of the quasi-CW
§ -, - slices of the stretched pulse with which each of the pulses in
g 4 § the test pair are upconverted are determined by comparing a
2 :_8 2 SPIDER interferogram with the fundamental spectrum of the
i‘g’ «— = input pulse. This section addresses the details of each step of
= : | ] 1 : the calibration, provides estimates of the required accuracy,
-400 200 0 200 400 and points out self-consistency checks that allow the user
time (fs) to make certain that the apparatus is aligned and operating
@) correctly.

The first and most important step of the calibration proce-
dure is to determine the linear phase. The most reliable
means of doing this is to directly measure the contribution
to the SPIDER interferogram. This is readily accomplished
by recording the second-harmonic signal generated with the
stretched pulse blocked and the polarization of the test pair of
pulses rotated by 45(or, equivalently, the Type Il nonlinear
crystal rotated by 49. Since these two pulses are identical,
that is, they are not spectrally sheared, the only phase contri-
bution to the interferogram is the linear tewn regardless of
the phase of the input pulse. The second-harmonic calibration
interferogram is analyzed in the same manner as the SPIDER

(®) interferogram up to concatenation. The resulting phase is the

Fig. 8. (_a) The time—depe_ndent intensity and phase reconstructed from Hgsiredw term and is saved as a calibration trace so that it
(SSF;',Eﬁm?ti:gggrrraeﬁgt?gnﬁf%r?hébm?;sm;afglec’ (boxes) and reconstucledl, | ater be subtracted from SPIDER data. Directly measuring
the linear phase contribution is extremely accurate since the
calibration uses the test pair of pulses which propagate through

Autocorrelation

time (fs)

—~ 04 3 the entire SPIDER apparatus, and the same spectrometer and
T L . inversion procedure used for SPIDER data. Furthermore, this
e @ . 3 calibration procedure reduces the effects of dispersion in the
§ -4 7 = o device. For instance, it usually happens that the two pulses
B 6 a0 i in the test pair are not identical. This is because one of
§ 8 4 =9 0o the pulses passes through the substrate of the beamsplitter in
%_10 ) 3.. L the Michelson or the substrate of the etalon while the other
, , T'"'I , : does not. Approximately half of this effect is removed in the
345 350 355 3.60 365 3.70 calibration since the spectral phase difference between the

second-harmonic pulses is roughly half of the spectral phase
o/2n (THz) difference between the fundamental pulses. Consequently, the
Fig. 9. The spectral phase returned by SPIDER for the pulses of FigC@libration procedure eliminates half of the dispersive effects
(squares) and for the same pulses after propagation through a dispergifethe etalon or Michelson beamsplitter, making SPIDER a
piece of 'glass (triangles). The 'spectral phase predicted for the pulses UH%{J[ura”y Iow-dispersion device.
propagation through the glass is also shown (circles). . . . .
The second step of the calibration is to determine the spec-
tral shear. If a Michelson interferometer is used, the spectral
. . . . shear is easily measured by blocking each of the test pulses one
i o e oo i ey e and ecording e INAGUal upconvered speca s
. : -In Fig. 5. If an etalon is used, the procedure is more involved.
OV ce the spectral shear is a function of the separation of the
pulse structure on the order of the spectrometer resolution, . . . :
test pair of pulses and the dispersion of the stretcher, i.e.,
Q = —7/¢", it is necessary to determine and ¢". 7 is
determined by measuring the slope of the linear spectral phase
The SPIDER apparatus must be calibrated. Since there egturned from the first step of the calibration. The simplest,
no moving components, this needs to be done only once at #rel arguably most accurate, method for determinitids by
initial setup. To take full advantage of the extreme sensitivigalculation. For instance, for a conventional tandem pair of
to phase offered by SPIDER, parts of the calibration need to getings, the dispersion is determined by the separation of the
performed with interferometric accuracy. There are three stegratings and the angle of incidence of the input beam [14], both
to fully calibrate the device. First, the linear phase tesm of which can be precisely measured. The dispersion is sensitive

is determined from measurement of an interferogram withotat wavelength and therefore it is important to calculatefor

C. Calibrating the Apparatus
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a wavelength near the frequencies of the stretched pulse wigitonstructed spectral phase is

which the test pair are to be upconverted. Because the stretcher 1

typically stretches the pulse by a factor of several hundred, the  ¢,.(w) = 5(/);’ (w— o' — bu)?

spectral phase of the input pulse and the material dispersion 1

of beamsplitters, lenses, etc., are negligible. = ¢o(w) — ¢ 6w (w — ) + §¢g5w’2. (29)
The accuracy with which the shear should be determined

can be estimated by accounting for spectra| shear éf2an The error that is linear with frequency is an error in the

the approximate expression for the spectral phase given in (gi€fermination of the time of arrival of the input pulse, while
the constant error is in the determination of the absolute phase

1 50O of the input pulse. SPIDER does not return either of these
Pr(w) = Q+—69/ dwb(w) = ¢o(w) = ~5-¢a(w).  (28) quantities and, consequently, the errors are meaningless. The
error inw’ is meaningful if the actual spectral phase has terms

The fractional error in the reconstructed phase caused by effbPrder greater than quadratic. But, a similar argument to that
in the calibration of the spectral shear is simply equal to tfff (29) reveals that the tolerance ar is not stringent—if
fractional error of the shear. For instance, a 1% calibratide SPectral phase is dominated by cubic phase, an ertof in
error results in a 1% error of the reconstructed spectral phaQk 5% Of the test pulse bandwidth results in an error of the
Since the spectral shear is determined from the separatiorf?ﬁonStrUCted spectral phase of less than 1%.

the test pair of pulses and the dispersion of the stretcher, the

error in determining each of these two parameters should be V. SUMMARY

minimized.7 can be determined from the slope of the linear gpectral phase interferometry for direct electric-field recon-
spectral phase returned from the first step of the calibratigyction (SPIDER) is a simple and reliable interferometric
with error of less than 1%;p" can be calculated with similar technique for measuring the electric field underlying an ul-
accuracy. trashort optical pulse. The data inversion algorithm is direct
The third and final step of the calibration procedure is {Goniterative), and the amount of data is much less than that
determine the quasi-CW frequencies of the stretched pulgguired by spectrographic and tomographic techniques. The
with which the test pair are upconverted. If a MichelsoRp|DER apparatus has no moving components. Moreover,
interferometer generates the test pair, the quasi-CW frequergyce SPIDER uses a Type Il nonlinear crystal, the apparatus
with which each pulse is upconverted is readily determingd entirely collinear and background-free. Also, there is no
by blocking one arm of the interferometer and recorded thgnpiguity as to the direction of time of the reconstructed pulse
resulting upconverted spectrum’ is determined by simply eyen using a lowest order nonlinearity.
comparing the upconverted spectrum with the fundamentalye presented in this paper experimental examples of recon-
spectrum. In practice, we make the comparison by numericallitycted pulses from a CW mode-locked Ti:sapphire oscillator
cross-correlating the two data sets. This also provides|#y]. we have also used a similar SPIDER device to measure
straightforward consistency check that the apparatus is Setdiflses from an amplified Ti:sapphire system, and, by using
properly. The upconverted and fundamental spectra shouldRgjinear downconversion instead of upconversion, we have
identical with the exception that they are shifted in frequengharacterized the pulses at the second harmonic of this system
with respect to one another. If the spectra are not identicplg]. SPIDER has also been used in the feedback loop for
then the apparatus requires adjustment. adaptive phase control of amplified pulses [19]. We are cur-
If an etalon is used to generate the test paircan be deter- rently developing both a device with real-time updating to take
mined from the SPIDER data and the fundamental spectrumgfyantage of the rapid data inversion algorithm of SPIDER,
the input pulse. The magnitude of the positive ac portion of thgq since SPIDER requires only 1-D data collection for pulse
interferogram is proportional tF(w. —w') E(w. —w' = Q)| reconstruction at a single spatial coordinate, a device with a
[see (13)]. To determine’, the product|E(w)E(w — )],  2.D CCD camera for measuring the electric field as a function
constructed from the fundamental spectrum and knowledgeq¥fpoth space and time.
Q, is compared t9E£(w, — ') E(w. — &' — §2)|. Once again,
this comparison also provides a straightforward consistency REFERENCES
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