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We propose a scheme for the generation of arbitrary coherent superpositions of vortex states in Bose-
Einstein condensates (BEC) using the orbital-angular-momentum states of light. We devise a scheme to
generate coherent superpositions of two such counterrotating states of light using well-known experi-
mental techniques. We show that a specially designed Raman scheme allows for transfer of the optical
vortex-superposition state onto an initially nonrotating BEC. This creates an arbitrary and coherent
superposition of a vortex and antivortex pair in the BEC. The ideas presented here could be extended to
generate entangled vortex states, design memories for the orbital-angular-momentum states of light, and
perform other quantum information tasks. Applications to inertial sensing are also discussed.
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Generation and manipulation of macroscopic superpo-
sitions, as well as entangled states, is of paramount interest
to the field of quantum information [1]. In this regard,
Bose-Einstein condensates (BEC) [2] come across as ideal
candidates. BECs correspond to highly coherent macro-
scopic ground states of the confining potentials. Moreover,
vortex states of BECs, which are topological states with
special phase structure, have been realized experimentally
[3]. Stirring a BEC cloud with laser beams leads to the
nucleation of vortex lattices in the BEC. These vortex
states are fairly stable and could be candidates for qubits
in quantum information processors, if appropriate means to
manipulate them are developed.

In an entirely different area of optical physics, tremen-
dous progress has been made in creation [4—6], manipu-
lation [7], detection [8,9], and application [10] of the
orbital-angular-momentum (OAM) states of light. The
OAM states have a corkscrew-type helical phase structure.
To illustrate, an OAM state with angular momentum #¢ has
|€] azimuthal phase singularities across a cut taken in the
beam path. The sign of € corresponds to the sense of
rotation of the phase fronts around the beam axis. Each
photon in the OAM beam carries an orbital-angular mo-
mentum of €. The quantum nature of these OAM states
has been demonstrated recently by showing that a photon
pair created in parametric down-conversion process is en-
tangled in the orbital-angular-momentum space along with
the usual polarization entanglement [11].

Excitation of vortices in BECs, using the optical vortex
beams, has been proposed recently using Raman tech-
niques [12,13] and using slow light techniques [14]. In
this Letter we introduce a scheme for creation of macro-
scopic superpositions of BEC vortex states through transfer
of angular momentum of light from specially prepared
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OAM-state superpositions. These should be compared to
recent macroscopic superpositions of counterrotating elec-
trons in the superconducting flux qubits [15].

Generation of the superposition of Gaussian beams with
OAM states of light has been demonstrated [16]. Our
interest, however, lies in creating an arbitrary superposition
of two counterrotating optical vortices.

The OAM states of light have unique amplitude and
phase structures. To illustrate, monochromatic OAM
beams have an azimuthal phase dependence of the type
exp(if®). Laguerre-Gaussian (LG) laser modes are an
example of such OAM states [17]. The normalized LG
mode at the beam waist (z = 0) and beam size w at the
waist is given in cylindrical coordinates (p, ¢, z) by

. _ 2p! 1 (\2p\lA 207
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where L!,(p) are the associated Laguerre polynomials,
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wy is the beam width, p is the number of nonaxial radial
nodes of the mode, and the index €, referred to as the
winding number, which describes the helical structure of
the wave front around a phase dislocation. For further
discussion we consider only pure LG modes with charge
£ and p = 0; we denote such a state of the light field by |€)
such that (r|¢) = LG§(p, ¢). Thus the states |+€) and
| =€), with € being a whole number, differ only in the
sense of the winding of the phase—either clockwise or
counterclockwise. Our aim is to create a general superpo-
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sition of the OAM states of light of the kind: (a, |€) +
a_| =€), with |a,|*> + |a_|*> = 1. It is well known that
creation of superposition of OAM states of the kind
S ecel€) is a fairly straightforward procedure by using
computer generated holographs [5] or phase plates [6].
Moreover, a sorter of these OAM states has also been
demonstrated [9] that can distinguish and separate different
OAM components. Thus, by using a mixed OAM-state
generator and a OAM sorter in conjunction one can easily
obtain a pure OAM state |€).

We note that dove prisms can be used to change the
handedness of light beams passing through them [18].
Consequently, the sense of the phase winding of an LG
beam would be reversed as it passes through a dove prism.
Using this, we devise a Mach-Zender type configuration as
shown in Fig. 1 to generate a general superposition (7€) +
7| — €)) at one of the output ports of the interferometer.
The first beam splitter is taken to be a special beam splitter
with the ratio of if:7 for the transmitted and the reflected
amplitudes at its output ports. The second beam splitter is a
usual 50:50 beam splitter.

The operation of the Mach-Zender configuration of
Fig. 1 can be described through the matrix representation
of beam-splitter operation [19], such that the initial state
(1€), 0)T transforms into
L a6+ -0 3)
ﬁ(i(fl o= ey)

at the exit ports 1 and 2 of the Mach-Zender Interferometer,
respectively, with the choice of ¢ = 7. Thus, by ignoring
port 2 and renormalizing the state from port 1 we obtain the
required superposition state 7€) + 7| — €), as |#|> + |7]> =
1. In the following we present our scheme for transferring
this optical vortex state superposition to BEC vortex
superpositions.

Highly detuned optical fields in a Raman configuration
have been used to coherently manipulate and create various
superpositions of different atomic levels [20]. Similar op-
tical manipulation techniques exist to couple BEC clouds
in different internal states. Moreover, the OAM states of
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FIG. 1. Generation of superposition of the OAM states. The

first beam splitter (BS) at the input is a |#|?/|7]> beam splitter as 7
and i are the reflection and transmission amplitudes. The second
beam splitter is 50:50, and the mirrors (M) are perfectly reflect-
ing. The dove prism (DP) performs the operation [€) — | — £).
Choosing ¢ = a7, and discarding the output at port 2, state (7] +
€) + 7| — €)) is obtained at port 1.

light have also been shown to be useful for excitation of
vortices in BEC through time-dependent linearily varying
two-photon detuning [12] and through the STIRAP [21]
type scheme [13]. In the following we discuss a Raman-
type scheme to generate a superposition of vortex states in
a BEC.

The level scheme for our model is depicted in Fig. 2. An
initially nonrotating state |0) is coupled optically via two
Raman-type configurations of the external fields, (Q ,, Q)
and (Q_, Q,.), through internal states |i) and [i’). The
polarizations of the optical fields are taken as shown in
the figure; thus the internal quantum numbers of the final
states |+) and |—) are the same. The Rabi frequencies () ;
and () _ arise from the coupling of the BEC cloud with the
two counterrotating components of the special optical
vortex state generated through the configuration discussed
in Fig. 1.

Noting that the optical fields are highly detuned, the
intermediate states (|7) and |i’)) are sparingly populated.
Thus, they can be adiabatically eliminated from the
equations. Within this adiabatic approximation we can
write a modified set of Ginzburg-Pitaevskii-Gross (GPG)
[22] equations for the multicomponent BEC trapped
by the cigar-shaped trapping potential V = (m/2) X
(w3 r* + w.z%), where w, and w, are the transverse and
longitudinal trapping frequencies, respectively. Also m is
the mass of the individual atoms in the BEC cloud. We note

that r = /x> + y? is the transverse radial coordinate and ¢
is the azimuthal angle in the x-y plane that will be required
later to describe the phase structure of the rotating BECs.
The configuration-space representations of the states
|0), |+) and |—), shown in Fig. 2, are taken to be V¥,
V¥, , and V_, respectively. Thus, including the Raman-
type optical couplings arising from the adiabatic elimina-
tion of the intermediate state, we arrive at the modified
GPG equations for the three relevant components of the
BEC cloud

FIG. 2. The level scheme for generation of vortex state super-
position. A nonrotating state |0) is coupled to the vortex states
|+) and |—) through the optical vortex field components provid-
ing coupling strengths ), {)_ and a strong drive field with Rabi
frequency (.. The optical vortex beam is o, polarized, whereas
the drive field is o_ polarized such that the hyperfine quantum
number m, is the same for the components |0), |=). The vorticity
of the |*) states is =, respectively.
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where H =T +V — u+ n(|V|2 + [V, * + |[¥_]?)
is the self-energy operator which includes the kinetic
(T), potential ('V), and the interaction energy operators
for the BEC states. Here n = 4wha,N/m is the strength
of the interparticle interactions of the N-particle BEC
cloud, governed by the scattering cross section a .. Using
the LG beam mode function Eq. (1), the Rabi frequencies
corresponding to the coupling between the optical vortex
beam superposition a [€) + a_| — €) and the BEC cloud
can be written as

Q. (r) = a. Qe " (V2r/w)llle=itd gk )

where (), is the usual atom-field interaction Rabi fre-
quency. The amplitudes a. are respectively 7 and 7 corre-
sponding to the first beam-splitter transmission and
reflection amplitudes of the configuration shown in
Fig. 1. With the size of the condensate chosen to be
much smaller than the Laguerre-Gaussian beam waist,
the exponential dependence on the radial coordinate in
Eq. (5) can be ignored. Now we make an ansatz that the
topological structure of the states |0), | +) are given by

Wy(r, 1) = a(t)explilu/h — K)t]g,(r),
V. (r, 1) = B+(t)exp[i(6 + u/h — k)t]th,(r),

where the nonrotating component #,(r) and the rotating
vortex components i, (r) are given by

Yo (r) = exp{—(1/2)[(r/L1)* + (z/ L)1}/ 7*L LY?
Ype (1) = (= i)l /TN g (v). (6b)

Here L, and L, are the size parameters of the condensate
in the x-y plane and the z directions, respectively, and 9 is
the two-photon detuning as shown in Fig. 2. Thus, the time
dependence of the populations of different components
(la(2)% |B=()|*) can be studied by projecting the rate
Egs. (4) on to the topological states (6a). So far the equa-
tions are very general and no restriction exists on the OAM
quantum number €. Hereafter, for convenience, we resort
to a particular value of € = 2. However, one may note that
the general idea would remain valid for any given €. Thus,
taking the projections onto the specified rotating or non-
rotating states we arrive at

ia(r) = 3xla(®)Pa() + w [a} B (1) + a* B_(1)]

1) = 8+ 20, + 5 SIBOF |- + v a.aln

(6a)

)

Here, the interparticle interaction strength appears through
the parameter x = mha,N/[m(27)>/?L? L_]. This set of

equations can be solved numerically, using the experimen-
tal parameters for a ’Rb BEC [23] (i.e., w; = 132 Hz,
ae=5nm, L), =235 um, L, = 1.4 um), so that k =
422 Hz. The results of our numerical studies are summa-
rized in Fig. 3. We define a transfer function f(¢) =
la(t)]? — | B+ (1)]*> — |B_(1)|?, which signifies the amount
of population transferred from state |0) to states |*).
Initially f(r = 0) = 1 as all the population resides in the
nonrotating ground state. If complete transfer is achieved
to an appropriate superposition of the |*) states then
f(t) = —1. The transfer function, f(¢), is plotted for vari-
ous values of the two-photon detuning ¢ in Fig. 3(a). The
result is that only a continuous time variation of the detun-
ing, achievable by changing the frequency of the second
optical field, leads to complete population transfer at the
steady state. Since the interaction terms in Eq. (7) effec-
tively lead to time-dependent energy shifts of the vortex
states as they begin to get occupied, only a time varying
detuning maintains effective two-photon resonance to give
complete population transfer. Furthermore, the BEC vortex
state at the steady state can be shown to be a’ | +) + a* |—)
when the input optical vortex state is a,|€) + a_| — €),
i.e., the phase difference between the BEC vortex compo-
nents is negative of that between the optical vortex com-
ponents. Figures 3(b)—3(d) show generation of various
superposition of the vortex states | =) for the time varying
detuning.

The resulting vortex-superposition state could be de-
tected by imaging its particle density distribution, which
is proportional to an interference pattern of its components.
Figure 4 shows x-y cross section of this interference pattern
for a particular vortex state a|¢ = +3)+ Bel?| — € = —3).
The pattern contains m = 2¢ lobes and the visibility
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FIG. 3. (a) Transfer function f(rf) for various detunings.
(A) 6=0, (B) 6 =900, (C) 6§ =380, (D) linearly varying
detuning 8(f) = 3000-400%¢. All detunings are given in Hertz.
The complete population transfer to the vortex state, correspond-
ing to f(r) = —1 for sufficiently large ¢ (measured in seconds), is
possible only with time-dependent detuning. (b)—(d) show vari-
ous superpositions of the vortex states. The steady state ratios are
give in the notation |3, |%:|8_|.
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FIG. 4. Detection of the vortex superposition through charac-
teristic interference of a general normalized state «| + €) +
Bel?| —€). €=3 and ¢ =0 unless specified otherwise.
(a) a®:8% = 1:1; V = 1, giving m = 2£ lobes in the interference
pattern. (b) a?: 8% = 0.1:0.9; V = 0.6. (c) a?:8%> = 0.9:0.1; V =
0.6. Patterns (b) and (c) are identical. (d) Phase determination:
a?:8%> = 1:1, ¢ = m; V = 1, notice rotation of the pattern with
respect to that of (a) by an angle ¢/m. After adding one more
unit of OAM in the superposition to arrive at a| + € + 1) +
Be'®| — € + 1) distinct patterns (e) and (f) are obtained instead
of (b) and (c).

V =2ap gives the measure of the asymmetry in the
amplitudes. The pair {&, 8} can be determined using mea-
sured V and the normalization condition a® + 8% = 1.
However, this does not assign the amplitudes to the states
|+) or |—) with certainty, as the patterns in Figs. 4(b) and
4(c) are identical. We propose shining a OAM = +1 light
of o, polarization to obtain the vortex state «|3 + 1) +
Be'?| — 3 + 1), the resulting interference pattern is shown
in Figs. 4(e) and 4(f), which clearly differentiates between
the two amplitude values giving rise to same visibility in
Figs. 4(b) and 4(c). The phase difference ¢ causes rotation
of the whole pattern by an amount ¢/m as shown in
Fig. 4(d). Existing theoretical schemes for detecting vortex
states [24] could also be extended to detect a superposition
of vortex states.

To conclude, we have devised a scheme to generate
superposition of two counterrotating optical vortices. We
have designed a Raman-type scheme to transfer the optical
vortex superposition onto a superposition of vortices in
BEC. We have suggested a detection scheme based on
observing the particle density distribution. The macro-
scopic superpositions of vortices could have important
fundamental as well as practical applications.
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