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Theoretical analysis of two-step holographic recording with high-intensity pulses
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We develop a full numerical as well as an approximate analytic solution for two-step holographic recording
with high intensity pulses in LiNbO3:Fe crystals. We find the unknown material parameters by fitting the
numerical solution to the experimental results. The two important parameters that were unknown so far and
found in this work are the bulk photovoltaic coefficient and absorption cross section for the excitation of the
electrons from small polarons in LiNbO3 with infrared light. We show that the approximate analytic solution
agrees very well with the numerical solution~as well as the experimental results! for most practical applica-
tions. We use the analytic solution to explain the experimental observations that were not understood before.
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I. INTRODUCTION

Photorefractive crystals are excellent candidates for v
ume holographic storage@1–3#. A major obstacle in making
practical read/write holographic memory systems has b
nonpersistence~or destructive readout! of the stored informa-
tion. Thermal fixing@4# and electrical fixing@5# are the two
major nonoptical methods for obtaining persistence. Ho
ever, they require heating the sample or applying large e
tric fields. All-optical methods for persistent holographic r
cording include frequency-difference holograms@6#, readout
with wave-vector spectra@7#, and gated recording@8,9#.
Among all the methods proposed, gated recording is
most promising one for obtaining persistent read/write ho
graphic memories.

Gated holographic recording relies on the existence
two sets of traps~shallower and deeper traps! with energy
levels in the band gap of the recording crystal. These tr
can be due to doping by impurities~for example,
LiNbO3:Fe:Mn crystals@9#! or ~at least one set of traps! can
be due to intrinsic traps@8# ~polarons, bipolarons, etc.!. We
refer to recording using the former as ‘‘two-center reco
ing’’ and to that using the latter as ‘‘two-step recording
since intrinsic defects can occur in a very high concentra
enabling direct charge transfer between the shallower and
deeper traps. Recording is performed by the simultane
presence of a sensitizing~or gating! beam of shorter wave
length ~higher photon energy! and two recording beams o
longer wavelength~lower photon energy!. Electrons are ini-
tially in the deeper traps~shallower traps are initially empty!.
Sensitizing light causes the electron transfer from the dee
traps to the shallower traps. The hologram is recorded by
recording beams using the electrons from the shallo
traps. The final hologram is imprinted in the deeper tra
and persists against readout with the light of longer wa
length ~same as recording wavelength!. In this paper, we
mainly consider two-step holographic recording
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LiNbO3:Fe crystals with green pulses for sensitization a
infrared pulses for recording.

Most of the initial two-step holographic recording expe
ments were performed with high intensity pulses in cong
ent LiNbO3 @8,10–12# and LiTaO3 @13# crystals. More re-
cently, two-step recording experiments using stoichiome
LiNbO3 crystals with cw light were reported@14–18#. The
shallower traps in two-step recording in LiNbO3:Fe and
LiNbO3:Cu are due to the small NbLi polarons caused by
niobium on the lithium site@19,20#.

A two-center model for two-step recording with the lig
of only one wavelength~same wavelength for sensitizatio
and recording! was proposed@21#. However, a theoretica
analysis of the two-step persistent storage in LiNbO3:Fe is
still missing. The question is whether the iron-polaron mo
can describe quantitatively the obtained experimental res
using the charge transport parameters known for LiNb3
from the literature. The aim is to achieve a model and
parameter set that explainsall photorefractive features o
congruent LiNbO3, at low and high light intensities, for one
and two-step recording. A full theoretical description a
understanding of the processes is highly desired, beca
then the optimum performance of the material and the c
ditions to achieve this performance can be predicted. F
thermore, there are several experimental observations
have not been explained yet. Having a reliable model is v
helpful in understanding the physical mechanisms resp
sible for two-step recording and the explanation of the
perimental observations. First general attempts of a for
analysis of the processes involved in different two-step
cording schemes were performed only for materials w
negligible bulk photovoltaic effect@22#.

In this paper, we present a full theoretical analysis
two-step holographic recording in LiNbO3:Fe crystals with
high intensity green pulses for sensitization, and infra
pulses for recording. We start with the two-center model a
first develop a full numerical solution of the governing equ
tions without any approximation. We compare the numeri
solution with the experimental results to compute two u
known parameters of the shallow polaron levels in congru
LiNbO3 at infrared. Since the variations of the holograph
recording properties during one short pulse are small,
expand all variables in the governing equations by the fi
few terms of their Taylor expansion to develop an analy
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ALI ADIBI, KARSTEN BUSE, AND DEMETRI PSALTIS PHYSICAL REVIEW A63 023813
solution to the governing equations within one pulse wid
We then use the appropriate initial conditions at the beg
ning and at the end of each pulse to obtain analytic formu
for major holographic recording parameters at all time.

After finding the analytic formulas for the saturatio
space-charge field and the recording time constant of a
logram, we use some approximations to simplify the eq
tions for explaining all experimental observations~including
those that were not explained before! based on simple physi
cal principles. For normal recording in LiNbO3 ~one set of
traps, one light wavelength!, the formulas for the saturatio
space-charge field (Eusaturation) and recording time constan
(t r),

Eusaturation52
kDND

2I R

emn0
, ~1!

1

t r
5

emn0

ee0
, ~2!

are well known. In these equations,kD , ee0 , m, ande are
the bulk photovoltaic constant of the deep traps~for ex-
ample, Fe in LiNbO3:Fe!, permittivity of LiNbO3, electron
mobility in the conduction band, and electronic charge,
spectively. Furthermore,ND

2 , n0 , andI R are the average~or
dc! electron concentration in the deep traps, average elec
concentration in the conduction band, and the amplitude
the space-varying part of the recording intensity, resp
tively. Our theoretical analysis shows that we can also
Eqs.~1! and ~2! for two-step recording if we simply replac
ND

2 and n0 by NX0,ave
2 and n0,ave ~the values of the dc com

ponents of the electron concentrations in the shallower tr
and in the conduction band, respectively, time-avera
within one pulse width!. This is a major step in understand
ing the dominant processes in two-step holographic rec
ing, and explaining all the experimental results.

II. EXPERIMENTS

Melt-doped single domain LiNbO3:Fe samples grown by
the Czochralski technique are investigated. The total Fe c
centrationcFe of the samples is determined by x-ray fluore
cence and atomic absorption spectroscopy. The samples
tain typically between 370 and 1070 mol ppm Fe. T
uncertainties of the determinedcFe values are about615%.

The valence states of the Fe ions are varied by suita
annealing treatments@23#. Heating in pure oxygen atmo
sphere, e.g., to a temperature of 1000 °C, tends to oxidize
ions to Fe31, whereas heating in argon atmosphere
vacuum~low oxygen partial pressure! yields a reduction of
the ions to Fe21.

Determination of the concentrationscFe21 and cFe31 is
based on Mo¨ssbauer experiments@23#. From the comparison
of the Mössbauer results with optical absorption measu
ments, the oscillator strengths of the bands are calcul
@24#. The absorption coefficient at 477 nm for ordinarily p
larized light, determined by a Cary 17 D spectrometer, yie
cFe21 . Then,cFe31 can be determined because the entire
concentration of the crystal is known, and the Mo¨ssbauer
results clearly demonstrate that only Fe21 and Fe31 states of
02381
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Fe ions are present in LiNbO3:Fe crystals. Typically ratios of
cFe21 /cFe31 in the range from 0.01 to 1 can be adjusted e
ily.

Figure 1 shows a schematic illustration of the holograp
setup. AQ-switched Nd:YAG laser with a frequency double
produces simultaneously infrared (l51064 nm, pulse dura-
tion 25 ns! and green (l5532 nm, pulse duration 15 ns!
ordinarily polarized TEM00 light pulses. The repetition rate
of the system used is only about 0.1 Hz. A dielectric be
splitter separates the infrared and green light. An additio
beam splitter divides the infrared light into two cohere
beams of equal intensity. These beams enter the crystal s
metrically in a plane containing the crystal’scW axis. The
green pulse enters the sample simultaneously or with a d
of up to 100 ns achieved by an optical path difference.

Holographic readout is performed by low intensity ord
narily polarized continuous-wave HeNe laser light (l
5633 nm) entering the crystal under the Bragg angle. P
todiodes behind the sample detect transmitted and diffra
light intensities. The diffraction efficiency is defined as t
ratio of the intensities of the diffracted and total transmitt
light. From Kogelnik’s formula@25#, we then calculate the
refractive index changes. The intersection angle of the in
red pulses and the light wavelength determine the frin
spacingL. This L value is in the employed transmissio
geometry typically about 1 to 2mm. Neutral density filters
provide variations of infrared and green light intensities.

Figure 2 illustrates a typical hologram writing and erasi
cycle. The time scale corresponds to the exposure time o
green (l5532 nm) light. The circles represent experimen
data and the solid lines are exponential fits taking into
count absorption effects@26#. Typical total infrared and
green light intensities areI 10645250 GW m22 and I 532
5110 GW m22.

III. TWO-CENTER MODEL

The two-center charge transport model for LiNbO3:Fe
was introduced in 1993 by Jermann and Otten@21#. Figure 3

FIG. 1. Schematic drawing of the experimental setup for tw
step holographic recording.
3-2
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THEORETICAL ANALYSIS OF TWO-STEP . . . PHYSICAL REVIEW A 63 023813
shows the band diagram of a LiNbO3:Fe crystal. Electrons
can be excited from Fe21 by light either into the conduction
band or into NbLi

51 forming NbLi
41. Direct excitation into NbLi

requires that there are always some NbLi centers close to
each Fe21. This is the case, because NbLi is an intrinsic
defect that occurs in a very high concentration@19,20#. The
electrons in the shallower NbLi

41 traps can be excited to th
conduction band by light or thermally. Otherwise, they
combine directly with the iron ions where they come fro
The conduction-band electrons can recombine either w
Fe31 or with NbLi

51. The iron level is ‘‘deep’’ and the polaron
level is often called ‘‘shallow,’’ although these words have
different meaning in semiconductor physics, where shal
levels are characterized by a strong thermal generation

Green light ~wavelength 532 nm! has sufficient photon

FIG. 2. Refractive-index amplitudeDn of a holographic grating
during a typical writing and erasing cycle. The circles illustrate
experimental data and the solid lines are monoexponential fits
ing into account absorption effects@26#. The time scale correspond
to the exposure time of the green (l5532 nm) light. During the
first 4-ms infrared and green light~wavelengths:l51064 nm, l
5532 nm; intensities:I 10645250 GWm22, I 5325110 GWm22) are
simultaneously present. The next 8-ms readout of the hologram with
one of the infrared writing beams (I 10645125 GWm22, I 53250) is
performed. After this second step, the hologram is erased by g
light (I 106450, I 5325110 GWm22).

FIG. 3. Band diagram of the charge transport situation in c
gruent iron-doped lithium niobate (LiNbO3). The arrows indicate
excitation and recombination of electrons. A detailed descriptio
given in the text.
02381
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energy to excite electrons from Fe21 either into the conduc-
tion band or into the secondary centers, or from NbLi

41 into
the conduction band. Infrared light~wavelength 1064 nm!,
however, has a smaller photon energy that is sufficien
excite electrons from NbLi

41 into the conduction band, only.
Excitation and recombination of the electrons can be

scribed by the rate equations@21#

]NFe
2

]t
52@qFesFe1qFeXsFeX~NX2NX

2!#I GNFe
2

1~gFen1gFeXNX
2!~NFe2NFe

2 !, ~3!

]NX
2

]t
52@bX1qX,GsX,GI G1qX,IRsX,IRI IR

1gXFe~NFe2NFe
2 !#NX

2

1~gXn1qFeXsFeXI GNFe
2 !~NX2NX

2!. ~4!

All symbols are introduced in Table I. Excitation of electro
from NbLi

41 is possible by green light~wavelength 532 nm!
and by infrared light~wavelength 1064 nm!. Thus, we added
in Eq. ~4! a generation term to account for the presence
the infrared light. Some parameters have a subscript ‘‘G’’ or
‘‘IR’’ to indicate whether they correspond to green or infr
red light.

We treat the situation where the light intensity and the
fore all other spatially dependent quantities vary only alo
one direction. The coordinate along this direction isx. Then,
the current, continuity, charge, and Poisson equations ar

j 5emnE1kFeNFe
2 I G1kX,GNX

2I G1kX,IRNX
2I IR1mkBT

]n

]x
,

~5!

] j

]x
52eS ]NFe

2

]t
1

]NX
2

]t
1

]n

]t D , ~6!

r52e~NFe
2 1NX

21n2NA!, ~7!

]E

]x
5

r

ee0
. ~8!

Drift, bulk photovoltaic, and diffusion currents are consi
ered. All symbols are introduced in Table I.

Jermann and Otten determined a set of parameters, w
describes excellently all photorefractive features
LiNbO3:Fe observed in the experiments with the green lig
at continuous-wave and at pulsed laser intensities@21#. Their
parameter set will be also employed in this work. Thus, o
model is immediately consistent with all usual photorefra
tive properties of LiNbO3:Fe for recording with light of one
wavelength. Only two of the many parameters occurring
Eqs.~3!–~8! are new and unknown:qX,IRsX,IR andkX,IR , the
photon absorption cross section and the bulk photovol
coefficient of NbLi

41/51 for excitations with infrared light.

k-

en

-
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TABLE I. Units, meaning, and values of all quantities involved in the analysis of two-step holographic recording in LiNbO3:Fe.
Subscripts ‘‘0’’ and ‘‘1’’ are added in the text to the spatially dependent quantities to indicate zeroth and first Fourier components
in parentheses show standard values, which are valid if nothing else is mentioned.

Quantity ~unit! Meaning Value Reference

Parameters of Fe
NFe(m23) Total concentration of Fe 1.231025

NFe
2 ~m23! Concentration of Fe21 variable

qFesFe(m2/J) Absorption cross section of Fe21 for absorption of
a photonand excitation of an electron from Fe21

into the conduction band~light wavelength 532
nm!

1.031025 @21#

gFe(m3/s) Coefficient for recombination of conduction band
electrons with Fe21

1.65310214 @21#

2kFe(m3/V) Bulk photovoltaic coefficient for excitation of electrons
from Fe21 into the conduction band~light
wavelength 532 nm!

3.5310233 @21#

Parameters of NbLi

NX (m23) Total concentration of NbLi 1026 @19#, @20#, @21#

NX
2 (m23) Concentration of NbLi

41 variable
bX (s21) Rate of thermal excitation of electrons from NbLi

41

into the conduction band
0 @21#

qX,GsX,G (m2/J) Absorption cross section of NbLi
41 for absorption

of a photonand excitation of an electron into the
conduction band~light wavelength 532 nm!

5.031025 @21#

qX,IRsX,IR (m2/J) Absorption cross section of NbLi
41 for absorption

of a photon and excitation of an electron into the
conduction band~light wavelength 1064 nm!

5.431025 @this work#

gX (m3/s) Coefficient for recombination of conduction band
electrons with NbLi

51
0 @21#

2kX,G (m3/V) Bulk photovoltaic coefficient for excitation of electrons
from NbLi

41 into the conduction band~light
wavelength 532 nm!

21.2310233 @21#

2kX,IR (m3/V) Bulk photovoltaic coefficient for excitation of electrons
from NbLi

41 into the conduction band~light
wavelength 1064 nm!

32310233 @this work#

Parameters related to Fe and NbLi

qFeXsFeX (m5/J) Absorption cross section of Fe21 for absorption of
a photonand excitation of an electron into NbLi

41

~light wavelength 532 nm!

3.22310230 @21#

gXFe(m3/s) Coefficient for recombination of electrons from
NbLi

41 and Fe31
1.14310221 @21#

Parameters of LiNbO3
e Dielectric coefficient 28 @30#, @31#

r 13 (m/V) Electro-optic coefficient~light wavelength 632.8
nm!

10.9310212 @32#

n0 Refractive index for ordinarily polarized light
~wavelength 632 nm!

2.286 @33#

Charge transport parameters
j (A/m2) Current density variable

m ~m2/Vs! Electron mobility in the conduction band 7.431025 @34#

n (m23) Density of free electrons in the conduction band variable
r ~As/m3! Total charge density variable
NA (m23) Concentration of nonmobile positive compensation

charge, which maintains overall charge neutrality
(5.731024)

E (V/m) Space-charge field variable
023813-4



THEORETICAL ANALYSIS OF TWO-STEP . . . PHYSICAL REVIEW A 63 023813
TABLE I. ~Continued).

Quantity ~unit! Meaning Value Reference

Fundamental constants
kB (J/K) Boltzmann constant 1.38310223

e0 (As/Vm) Primitivity of free space 8.85310212

Parameters related to the experimental conditions
T (K) Crystal temperature 293
K (m21) Spatial frequency of the interference pattern 2.93106

L ~m! Period length of the interference pattern 2.231026

I G (W/m2) Intensity of the spatially homogeneous green light
~wavelength 532 nm!

variable

I IR (W/m2) Intensity of the infrared light~wavelength 1064 nm! variable
m Modulation degree of the interference pattern of

the infrared light
variable

tp (s) Duration of each green and infrared light pulse 1531029
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To study this model, we will investigate the situation
simultaneous illumination with spatially homogeneous gre
light and with a sinusoidally modulated infrared interferen
pattern

I IR5I IR,0@11m sin~Kx!#. ~9!

The symbols are explained in Table I. We assume that
light intensity does not change with time during illuminatio
All calculations are performed withm50.1 and the obtained
space-charge fields are normalized tom, i.e., they are divided
by m.

IV. NUMERICAL SOLUTION

A. Algorithm

One may argue that typical approximations like the ad
batic approximation@27# or Fourier development with the
neglect of higher Fourier orders@28# cannot be applied to ou
situation. Therefore, Eqs.~3!–~9! are solved numerically in
space without any approximation. The calculations are p
formed for one period length of the grating, and cyc
boundary conditions are used.

The starting condition is the steady-state situation in
dark with a homogeneous concentration of Fe21, which is
equal to the concentration of compensators~or acceptors!
NA , because the NbLi centers are initially not populated, i.e
NX

250. Calculations are done in time stepsdt: First, the
concentration patternsNFe

2 (x,t1dt) and NX
2(x,t1dt) are

calculated using Eqs.~3! and ~4!, and the valuesNFe
2 (x,t)

and NX
2(x,t). The current densityj (x,t) is calculated from

Eq. ~5! and the concentration patternn(x,t1dt) is finally
obtained fromn(x,t) and from Eqs.~3!, ~4!, and~6!. Then,
Eq. ~7! and the integration of Eq.~8! finally yield the space-
charge fieldE(x,t1dt). This cycle is periodically repeate
until the end of one light pulse is reached. The typical re
etition frequency of the pulsed lasers used in the experim
is low, i.e., around 10 Hz. The time between the pulses
sufficient that all electrons that were excited to NbLi

41 recom-
02381
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bine locally with Fe31. Thus, the program adds toNFe
2 the

actualNX
2 values at the end of each pulse and setsNX

2 to zero
afterwards. The created refractive index changes for o
narily polarized red light~wavelength 632.8 nm! are calcu-
lated with Dn(x)52(1/2)n0

3r 13E(x), using the parameter
introduced in Table I.

The time steps are always chosen so small that fur
reduction has no influence on the calculated results. A ty
cal time step for the calculations is 1 ps, and 100 points
space are used to represent one period length of the inte
ence pattern.

Numerical solution of the high intensity properties, as
done here, benefits from one fact: the concentration of
electrons in the conduction bandn is two or three orders of
magnitude smaller than the defect concentrations. The dif
ence is much larger for low light intensities, andn cannot be
obtained in the way described above because of limited
culation accuracy, i.e.,n is the tiny difference of two large
and almost completely compensating rates. Anyhow, the
gorithm is fine for pulsed illumination and no approxim
tions have to be introduced.

B. Shape and evolution of the space-charge field

Figure 4 shows the space-charge field pattern for differ
times. The space-charge field is a replica of the light patt
and has an almost perfect sinusoidal shape because o
low modulation depth (m50.1) used in these simulations
Thus, the amplitude of the space-charge field modulation
be easily determined from a sinusoidal fit to the compu
data. This result is a first indication that Fourier developm
will be a useful approach for obtaining an analytical soluti
to the problem.

The evolution of the space-charge field amplitude dur
recording and erasure is presented in Fig. 5. No electrons
in the NbLi

41/51 centers at the beginning of each light puls
Thus, the green light starts to erase the previously writ
hologram due to direct excitation of electrons into the co
duction band and the created conductivity. However,
3-5
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NbLi
41/51 is populated more and more during the pulse. T

infrared light excites electrons from this level into the co
duction band, a modulated bulk photovoltaic current aris
and the space-charge field grows. These processes ar
origin of what we observe in the saturation regime, i.e., a
long recording times, during each pulse at first a decre
and then an increase of the space-charge field amplit
Saturation means that erasure and recording effects com
sate each other completely. From Fig. 5 it becomes also c
that the evolution of the space-charge field during the pu
illumination can be very well approximated by a parabo
function. Furthermore, it can be seen that considering
fields at the end of each pulse, growth and erasure of
grating are described by monoexponential functions.

FIG. 4. Space charge fieldE versus spatial coordinatex normal-
ized to the grating period lengthL. The solid line shows the com
puted space-charge field after illumination with one, two, thr
four, and five light pulses of high intensity (I G5500 GW/m2, I IR

5225 GW/m2). The dashed lines are sinusoidal fits to the cal
lated curves.

FIG. 5. AmplitudeE1 of the space-charge field versus exposu
time for recording and erasure. The light intensities areI G

5500 GW/m2 andI IR05225 GW/m2. The averaged light intensitie
are equal for recording and erasure. The thin vertical lines indi
the end of each 15-ns-long pulse.
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C. Intensity and concentration dependences

The dependence of the saturation value of the created
fractive index modulations and of the recording time co
stant on the intensities of green and infrared light were
perimentally investigated@10,12#. Furthermore, the influence
of the initial homogeneous Fe21 concentration on the sens
tivity, i.e., on the change of the refractive index amplitu
per unit time at the beginning of the recording, and of t
initial homogeneous concentration of Fe31 on the saturation
values of the refractive index changes were also caref
determined in several experiments@10,12#.

Only two parameters remain free and can be varied
order to explain all these dependences, the photon absorp
cross sectionqX,IRsX,IR and the bulk photovoltaic coefficien
kX,IR of the NbLi

41/51 center for infrared light. Figures 6–9
show impressively that all experimental results mention
above can be excellently described by proper selection

,

-

te

FIG. 6. Variation of the saturation value of the amplitude of t
refractive index grating (Dn) and recording speedt r

21 ~inverse of
recording time constant! with average infrared light intensityI IR

~with constantI G5105 GW/m2). The curves are calculated in term
of the two-center model and the symbols are experimental data

FIG. 7. Variation of the saturation value of the amplitude of t
refractive index grating (Dn) and recording speedt r

21 ~inverse of
recording time constants! with green light intensityI G ~with con-
stant I IR5225 GW/m2). The curves are calculated in terms of th
two-center model and the symbols are experimental data.
3-6
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THEORETICAL ANALYSIS OF TWO-STEP . . . PHYSICAL REVIEW A 63 023813
just these two parameters. To find these two parameters
varied them over a wide range to obtain good agreem
between the theoretical and the experimental results
shown in Figs. 6–9. The results obtained forqX,IRsX,IR and
kX,IR are shown in Table I. This success is a clear indicat
that the model is appropriate and that the determined par
eters are very reliable. In the next sections, we will deve
an analytic solution and will use it to explain the experime
tal results.

V. ANALYTIC SOLUTION

In this section, we develop an approximate analytic so
tion for Eqs.~3!–~8!. To do this, we need some assumptio

FIG. 8. Variation of sensitivity~changes of the amplitude of th
refractive index changes per time at the beginning of record
dDn/dtu t50) with the averaged concentration of Fe21, NFe21 ~that
is equal toNA). The light intensities areI G5105 GW/m2 and I IR

5225 GW/m2. The curve is calculated in terms of the two-cen
model and the symbols are experimental data.

FIG. 9. Variation of the saturation value of the amplitude of t
refractive index grating (Dn) with concentration of Fe31, NFe31

~that is equal toNFe2NA). It is assumed that the iron concentratio
increases according toNFe52.23NFe31. The light intensities are
I G5105 GW/m2 and I IR5260 GW/m2. The curve is calculated in
terms of the two-center model and the symbols are experime
data.
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to simplify the equations. We can test the validity of ea
assumption by comparing results of the complete numer
solutions with and without that assumption.

A. Assumptions

Assumption 1: We neglect the trapping of the conductio
band electrons by the shallow traps during one pulse wid
Therefore, we assume that the shallow traps are ma
populated by direct electron transfer from the deep traps,
the conduction-band electrons are mainly trapped by
deep traps.

Assumption 2: We neglect thermal depopulation of t
shallow traps within one pulse at room temperature. This
valid assumption, as the lifetime of the electrons in shall
traps is normally a few milliseconds, while the pulse width
typically a few nanoseconds.

Assumption 3: We neglect direct electron transfer~recom-
bination! from shallow traps to deep traps within one pul
width. This is a valid assumption due to the same reason
in assumption 2. Combining assumptions 2 and 3 is equ
lent to assuming that the depopulation of the shallow tr
within one pulse width~a few nanoseconds! is negligible.

Assumption 4: We assume that any change in the conc
tration of electrons in the conduction band gets to ste
state much faster than that in the concentration of electr
in either trap. Therefore, in the time scale of the variation
electrons in the traps, we can assume]n/]t50. This is
called the adiabatic approximation@27#. Numerical solutions
of the system of differential equations with and without th
assumption are practically the same. This fact has been
ported by other authors, too~Ref. @21#!.

Assumption 5: We assume that the electron concentra
in the conduction band~n! is much smaller than that in th
deep and shallow traps (NFe

2 and NX
2 , respectively! as well

as (NFe
2 1NX

22NA). So, we neglectn in Eq. ~7!.
Assumption 6: We neglect the diffusion term in Eq.~5!.

This is a valid assumption in LiNbO3, since the major source
of the current is bulk photovoltaic current in the transmiss
geometry.

Numerical solutions of the governing differential equ
tions are practically the same with and without these assu
tions. In the next section, we add more approximations to
an analytic solution set for Eqs.~3!–~8!.

Assumption 7: We assume that the sample is sh
circuited, i.e., the electric field~E! does not have any dc
component.

B. Fourier development

We assume that with sinusoidal intensity variation@Eq.
~9!# each variable in Eqs.~3!–~8! can be represented by th
first two terms in its Fourier series expansion. For examp
the concentration of electrons in the deep traps (NFe

2 ) can be
represented as

NFe
2 5NFe0

2 1NFe1
2 exp~ iKx !. ~10!

Using this assumption, we can replace] /]x by zero for the
zero-order variables~e.g.,NFe0

2 ) and byiK for the first-order

,

tal
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ones~e.g., NFe1
2 ). Replacing every variable in Eqs.~3!–~8!

with its first two Fourier expansion terms and separating
equations for the zero- and first-order variables, we ob
the following two sets of equations:

dNFe0
2

dt
52@qFesFe1qFeXsFeX~NX2NX0

2 !#I GNFe0
2

1gFen0~NFe2NFe0
2 !, ~11!

dNX0
2

dt
52~qX,GsX,GI G1qX,IRsX,IRI IR0!NX0

2

1qFeXsFeXI GNFe0
2 ~NX2NX0

2 !, ~12!

dNFe0
2

dt
1

dNX0
2

dt
50, ~13!

NFe0
2 1NX0

2 5NA , ~14!

for the zero-order variables, and

dNFe1
2

dt
52„@qFesFe1qFeXsFeX~NX2NX0

2 !#I G1gFen0…NFe1
2

1gFen1~NFe2NFe0
2 !1qFeXsFeXNFe0

2 I GNX1
2 , ~15!

dNX1
2

dt
52~qX,GsX,GI G1qX,IRsX,IRI IR0

1qFeXsFeXI GNFe0
2 !NX1

2 1qFeXsFeXI G~NX2NX0
2 !NFe1

2

2qX,IRsX,IRNX0
2 I IR1 , ~16!

j 15
ie

K S dNFe1
2

dt
1

dNX1
2

dt D , ~17!

j 15emn0E11kFeI GNFe1
2 1~kX,GI G1kX,IRI IR0!NX1

2

1kX,IRNX0
2 I IR1 , ~18!

E15
2 ie

Kee0
~NFe1

2 1NX1
2 !, ~19!

for the first-order variables. The goal is to find the first Fo
rier term of the space-charge field (E1) that can be used to
find the change in the index of refraction through elect
optic effect. To findE1 , we first need to solve the equation
for the zero-order variables@Eqs. ~11!–~14!#. We can then
put the zero-order variables into the first-order equations
find E1 . To check the validity of the above assumptions,
solved the given zero- and first-order equations~with all as-
sumptions applied! numerically. Figure 10 shows the varia
tion of the space-charge fieldE1 with time during recording.
The same variation calculated by the exact numerical s
tion is also shown in Fig. 10, confirming the validity of a
assumptions and approximations.

Note that the use of only two Fourier components~zero
and first order! for each variable in the governing equatio
02381
e
in

-

-

d

u-

is valid only for small intensity modulation depth~up to m
50.8) @29#. For larger modulation depths, the space-cha
field calculated by using the Fourier development~with only
two terms for each variable! is smaller than the actual valu
~calculated by full numerical solution! by as much as 30%
~at m51). On the other hand, modulation depths larger th
m50.8 are hard to achieve experimentally~even with equal
intensity beams! due to the multiple reflections of the record
ing beams at the entrance and exit faces of the crystal. Th
reflections reduce the modulation depth by increasing the
light intensity. Therefore, the actual experimental modu
tion depth for equal intensity beams is aboutm.0.8, and the
actual experimental space-charge field is smaller than
calculated usingm51 by about 20%. This makes the Fouri
development~with the first two Fourier terms of each var
able! a better approximation than the complete numeri
solution for the actual measured values of space-charge
at high modulation depths. A similar argument holds for t
validity of assuming linear variation of the space-charge fi
with the modulation depthm that we used in the numerica
solution.

C. Solution of the zero-order equations

To solve the zero-order equations, we first put Eqs.~11!
and~12! into Eq ~13! and useNFe0

2 5NA2NX0
2 from Eq.~14!

to find n0 in terms ofNX0
2 ,

n0

5
qFesFeI GNA1~qX,GsX,GI G1qX,IRsX,IRI IR02qFesFeI G!NX0

2

gFe~NFe2NA1NX0
2 !

.

~20!

Therefore, we only need to solve forNX0
2 . This can be done

by puttingNFe0
2 5NA2NX0

2 into Eq. ~12! to obtain

FIG. 10. Theoretical calculation of the space-charge field ver
time during recording of a hologram using two-step recording. T
two curves are calculated using the complete numerical solu
and the approximate solution based on Fourier development
several assumptions given in the text. The agreement betwee
curves is excellent. The light intensities used in these calculat
are I G5105 GW/m2 and I IR05I IR15225 GW/m2.
3-8
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dNX0
2

dt
5qFeXsFeXI G~NX0

2 !2

2@~qX,GsX,G1qFeXsFeX~NX1NA!!I G

1qX,IRsX,IRI IR0#NX0
2 1qFeXsFeXI GNXNA , ~21!

with the initial condition beingNX0
2 (t50)50.

Assumption 8: We assume that

qFeXsFeXI G~NX0
2 !2!qFeXsFeX~NX1NA!NX0

2 ~22!

or

NX0
2 !NX1NA . ~23!

Since we usually haveNA!NX , the assumption of Eq.~23!
is equivalent to assuming that only a very small portion
the shallow traps is populated during one pulse width
electron transfer from the deep traps. Using this assump
we can neglectqFeXsFeXI G(NX0

2 )2 in Eq. ~21! and solve for
NX0

2 to obtain

NX0
2 5

qFeXsFeXI GNXNA@12exp~2t/tx!#

qX,GsX,GI G1qX,IRsX,IRI IR01qFeXsFeX~NX1NA!I G
,

~24!
r o

a
on
w

on

e

02381
f
y
n,

where

tx5
1

qX,GsX,GI G1qX,IRsX,IRI IR01qFeXsFeX~NX1NA!I G
.

~25!

Using the parameter values from Table I and assuming s
sitizing and recording intensities (I G and I IR0) of about
1012W/m2, we obtaintx.100 ns. For a pulse width oftp
.15 ns, we can calculate 12exp(2tp /tx).0.14. For I G
.I IR0.1011W/m2, and the same pulse width, we obtain
2exp(2tp /tx).0.015. Therefore, we can use the followin
approximation for the time within one pulse width (t<tp):

12exp~2t/tx!.
t

tx
. ~26!

With this approximation, we can summarize the zero-or
variables as

NX0
2 5qFeXsFeXI GNXNAt, ~27!

NFe0
2 5NA2qFeXsFeXI GNXNAt ~28!
n05
qFesFeI GNA1~qX,GsX,GI G1qX,IRsX,IRI IR02qFesFeI G!NX0

2

gFe~NFe2NA1NX0
2 !

5
qFesFeI GNA

gFe~NFe2NA!
1

qX,GsX,GI G1qX,IRsX,IRI IR02
NFe

NFe2NA
qFesFeI G

gFe~NFe2NA!
qFeXsFeXI GNXNAt5n001n01t, ~29!
nto
where we used a binomial expansion of the denominato
the right-hand side of Eq.~29! to obtain a solution in the
form of n05n001n01t. More specifically, we used

1

NFe2NA1NX0
2 .

12NX0
2 /~NFe2NA!

NFe2NA
. ~30!

Furthermore, any term that included (NX0
2 )2 was neglected.

Note that we could have obtained the same result by
suming that the variables do not change much during
pulse width and approximating each variable by the first t
terms in its Taylor series expansion aroundt50. In other
words, we could have approximated each variable during
pulse width by a simple linear function of time~i.e., C1
1C2t). The solution of the zero-order equations would th
consist of finding the unknown constants~i.e., C1 andC2).
n

s-
e

o

e

n

D. Solution of the first-order equations

We can put the solutions of the zero-order equations i
first-order equations@Eqs. ~15!–~19!# and solve them. To
solve the first-order equations, we first combine Eqs.~18!
and ~19! to obtain

j 152
ie2mn0

Kee0
~NFe1

2 1NX1
2 !1kFeI GNFe1

2 1~kX,GI G

1kX,IRI IR0!NX1
2 1kX,IRNX0

2 I IR1 . ~31!

Then, we put Eqs.~15!, ~16!, and ~31! into Eq. ~17!, and
solve forn1 as a function ofNFe1

2 andNX1
2 . The result is
3-9
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n152

emn0

ee0
1qX,GsX,GI G1qX,IRsX,IRI IR02S iK

e D ~kX,GI G1kX,IRI IR0!

gFe~NFe2NA1NX0
2 !

NX1
2

1

2
emn0

ee0
1qFesFeI G1gFen02

iK

e
kFeI G

gFe~NFe2NA1NX0
2 !

NFe1
2 1

S qX,IRsX,IR2
iK

e
kX,IRDNX0

2 I IR1

gFe~NFe2NA1NX0
2 !

. ~32!
t

-

a
ee
th

e

de

ar
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s

The next step is to substituten1 from Eq.~32! into Eqs.~15!
and~16!, and combine these two equations to obtain a se
two ordinary differential equations for two unknownsNX1

2

andNFe1
2 1NX1

2 as

d~NFe1
2 1NX1

2 !

dt
52Fem~n001n01t !

ee0
1

iK

e
kFeI GG~NFe1

2 1NX1
2 !

2
iK

e
~kX,GI G1kX,IRI IR02kFeI G!NX1

2

2
iK

e
kX,IRI IR1~qFeXsFeXI GNXNA!t, ~33!

dNX1
2

dt
5qFeXsFeXI G@NX2~qFeXsFeXI GNXNA!t#~NFe1

2 1NX1
2 !

2~qX,GsX,GI G1qX,IRsX,IRI IR0!NX1
2

1qFeXsFeXI G@NX1NA22~qFeXsFeXI GNXNA!t#NX1
2

2qX,IRsX,IRI IR1~qFeXsFeXI GNXNA!t, ~34!

where we replaced the zero-order variables (NX0
2 , NFe0

2 , and
n0) by their equivalents from Eqs.~27!–~29!. Note that we
deliberately choseNFe1

2 1NX1
2 as one variable since it is re

lated to the space-charge field as

E152
ie

Kee0
~NFe1

2 1NX1
2 !. ~35!

The initial conditions for Eqs.~33! and ~34! are

NFe1
2 ~ t50!5A, ~36!

NX1
2 ~ t50!50, ~37!

where we assumed that all electrons in the shallow traps
transferred to the deep traps in the time interval betw
adjacent pulses resulting in fully empty shallow traps at
beginning of every pulse (t50). The value ofNFe1

2 at the
beginning of each pulse~A! depends on time~or the total
number of previous pulses! as space-charge is built up in F
traps with time.

Assumption 9: We assume that the variations in first-or
variables~i.e., NFe1

2 and NX1
2 ) within one pulse width are

small. Therefore, we can approximate every first-order v
able with the first few terms in its Taylor-series expans
02381
of

re
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aboutt50. Since the right-hand sides of Eqs.~33! and ~34!
contain terms likeC11C2t, we approximate bothNFe1

2

1NX1
2 andNX1

2 by the first three terms in their Taylor-serie
expansions. Using the initial conditions given by Eqs.~36!
and ~37! and assuming that the pulse starts at timet50, we
can write

NFe1
2 1NX1

2 5A1Bt1Ct2, ~38!

NX1
2 5Dt1Et2. ~39!

Putting Eqs.~38!–~39! into Eqs.~33!–~34!, we obtain

B12Ct52S em~n001n01t !

ee0
1

iK

e
kFeI GD ~A1Bt1Ct2!

2
iK

e
~kX,GI G1kX,IRI IR02kFeI G!~Dt1Et2!

2
iK

e
kX,IRI IR1~qFeXsFeXI GNXNA!t, ~40!

D12Et5qFeXsFeXI G@NX2~qFeXsFeXI GNXNA!t#

3~A1Bt1Ct2!2~qX,GsX,GI G1qX,IRsX,IRI IR0!

3~Dt1Et2!1qFeXsFeXI G@NX1NA

22~qFeXsFeXI GNXNA!t#~Dt1Et2!

2qX,IRsXIRI IR1~qFeXsFeXI GNXNA!t. ~41!

Equating the coefficients of the first two powers oft ~dc and
linear terms! on the two sides of Eqs.~40! and~41!, we can
find a set of four equations for four unknowns,B, C, D, and
E. Solving such a set of equations results in

B52S emn00

ee0
1

iK

e
kFeI GDA, ~42!

C5
1

2 F S emn00

ee0
1

iK

e
kFeI GD 2

2
emn01

ee0
GA

2
1

2 FqFeXsFeXI GNXS iK

e D ~kX,GI G1kX,IRI IR02kFeI G!GA
2

iK

2e
kX,IRqFeXsFeXI GNXNAI IR1 , ~43!
3-10
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D5~qFeXsFeXI GNX!A, ~44!

E52 1
2 qFeXsFeXI GNX~qX,GsX,GI G1qX,IRsX,IRI IR0!A

2 1
2 qFeXsFeXI GNXFqFeXsFeXI G~NX12NA!1

emn00

ee0

1
iK

e
kFeI GGA2 1

2 qX,IRsX,IRqFeXsFeXI GNXNAI IR1 .

~45!

E. Saturation space-charge field

The space-charge fieldE1 within one pulse can be repre
sented as

E15
2 ie

Kee0
~A1Bt1Ct2!, ~46!

with A, B, Cdefined above. The saturation space-charge fi
can be easily obtained from Eq.~46! by noting that the
space-charge field at the beginning and at the end of e
pulse would be the same at saturation. This can be wri
mathematically as

E1~ t5tp!5E1~ t50!5
2 ie

Kee0
A, ~47!

or

B1Ctp50, ~48!

wheretp is the pulse width. PuttingB andC from Eqs.~42!
and~43! into Eq.~48!, we can solve for the saturation spac
charge field@2 ieA/(Kee0)# as

E1usaturation5
b1I IR1

b21b3I IR01b4I G
, ~49!

where

b152
tp

2ee0
qFeXSFeXNAkX,IR , ~50!

b25
emNA

ee0gFe~NFe2NA!
qFesFe1

iK

e
kFe, ~51!

b35
tp

2
qFeXsFeXNXF emNA

ee0gFe~NFe2NA
D qX,IRsX,IR1

iK

e
kX,IR,

~52!

b45
tp

2
qFeXsFeXNXF emNA

ee0gFe~NFe2NA!

3S qX,GsX,G2
NFe

NFe2NA
qFeSFeD1

iK

e
~kX,G2kFe!G

2
tp

2 S emNA

ee0gFe~NFe2NA!
qFesFe1

iK

e
kFeD 2

. ~53!
02381
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Equation~49! clearly shows the dependence of the saturat
space-charge field~and therefore, saturation hologra
strength! on the sensitizing and recording intensities. Lat
we will use Eq.~49! to explain the experimental results o
the intensity dependence of saturation hologram strength

F. Time dependence of space-charge field

In the previous calculations, we solved for the spa
charge field within one pulse. Due to the short lifetime
electrons in the shallow traps, compared to the time betw
adjacent pulses, we can assume that all electrons in sha
traps at the end of each pulse are transferred locally to
deep traps before the beginning of the next pulse. The lo
transfer of electrons between traps is based on the fact
almost all electrons are transferred directly from the shall
traps to the deep traps without passing through the cond
tion band.

To find the dynamics of space-charge formation, we ne
to calculate the space-charge field in the time scale m
longer than one pulse. To avoid confusion, we represent
space-charge field in this time scale byE1. The change in the
space-charge field within one pulse is

DE15E1~ t5tp!2E1~ t50!52
ie

Kee0
~Btp1Ctp

2!,

~54!

with tp being the pulse width. Therefore, we can write
approximate equation forE1 as

dE1

dt
.

DE1

tp
52

ie

Kee0
~B1Ctp!. ~55!

Note thatB and C in Eq. ~55! are now time dependent, a
they are different within different pulses. ReplacingB andC
from Eqs.~42! and ~43! into Eq. ~55!, we obtain

dE1

dt
5H 2S emn00

ee0
1

iK

e
kFeI GD

1
tp

2 F S emn00

ee0
1

iK

e
kFeI GD 2

2
emn01

ee0
G J S 2

ie

Kee0
AD

2
tp

2
qFeXsFeXI GNXS iK

e D ~kX,GI G1kX,IRI IR02kFeI G!

3S 2
ie

Kee0
AD2S tp

2ee0
kX,IRqFeXsFeXI GNXNAD I IR1 .

~56!

Note that2 ieA/(Kee0) is the space-charge field at the b
ginning of each pulse, and therefore we can write

E1~ t !.2
ie

Kee0
A~ t !. ~57!

Combining Eqs.~56! and ~57!, we obtain
3-11
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dE1

dt
52

E1

t r
1

E1usaturation

t r
, ~58!

where the saturation space-charge fieldE1usaturationis the same as that obtained by a simple observation previously@Eq. ~49!#,
and recording speed~inverse of recording time constantt r) is given by

1

t r
5S emn00

ee0
1

iK

e
kFeI GD2

tp

2 S emn00

ee0
1

iK

e
kFeI GD 2

1
tp

2 Femn01

ee0
1qFeXsFeXI GNXS iK

e D ~kX,GI G1kX,IRI IR02kFeI G!G
5S em

ee0

qFesFeNA

gFe~NFe2NA!
1

iK

e
kFeD I G2

tp

2 S em

ee0

qFesFeNA

gFe~NFe2NA!
1

iK

e
kFeD 2

I G
2 1

tp

2
qFeXsFeXNXS em

ee0

NA

gFe~NFe2NA! D
3S qX,GsX,G2

NFe

NFe2NA
qFesFeD I G

2 1
tp

2
qFeXsFeXNXS iK

e D ~kX,G2kFe!I G
2 1

tp

2
qFeXsFeXNXS em

ee0

NA

gFe~NFe2NA! D
3S qX,IRsX,IR1

iK

e
kX,IRD I GI IR0 . ~59!
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The solution of Eq.~58! for E1 with initial condition
E1(t50)50 is a monoexponential function like

E15E1usaturationF12expS 2
t

t r
D G . ~60!

This formula does not show the variation of the space-cha
field within the individual pulses. This is acceptable, since
the experiments we measure the diffraction efficiency of
holograms after pulses and not within them. Note that
time variablet in Eq. ~60! is the time where the pulse is o
~exposure time!. The space-charge field remains constant
tween adjacent pulses. Therefore, we delete the times w
the pulse is off from the time variablet. Note that Eq.~58!
can also be used with a different initial condition to obta
the space-charge field during erasure. Therefore, the rec
ing and erasure time constants are equal. In Sec. VI we
use Eqs.~49! and ~59! to explain the experimental depen
dence of the saturation space-charge field and recording
constant on the intensities of the sensitizing and record
beams.

We can improve the accuracy of the analytical formu
derived above by using more terms in the Taylor-series
pansion of different variables. The next approximation s
is to consider the first three Taylor-series terms for the ze
order variables and the first four ones for the first-order v
ables.

G. Simplified formulas

Although we derived analytic formulas for the saturati
space-charge field and recording time constant@Eqs.~49! and
~59!, respectively#, the formulas are so complex that we ca
not easily use them to explain the different experimental
servations based on the simple physical mechanisms. In
section, we use the parameter values from Table I to ca
02381
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late the order of magnitude of the different terms in Eqs.~49!
and ~59!. We then neglect the terms that are at least o
order of magnitude less than the others to obtain simplifi
formulas. In these calculations, we assumeI G;I IR0;107

2108 W/cm2 for the sensitizing and recording intensitie
tp.5 nsec for the pulse width, andL.2 mm for the grating
period at recording wavelength ofl51064mm. We also
assume that the oxidation/reduction state of the crysta
such thatNA /NFe;0.1, i.e., about 10% of the Fe traps a
initially occupied by electrons. These are typical values u
in the experiments.

1. Simplified formula for saturation space-charge field

Using material parameter values from Table I and exp
mental values given above, we can simplify Eq.~50! by us-
ing the following approximations:

K

e
ukFeu!

emNA

ee0gFe~NFe2NA!
qFesFe, ~61!

K

e
ukX,IRu!

emNA

ee0gFe~NFe2NA!
qX,IRsX,IR , ~62!

K

e
ukX,G2kFeu!

emNA

ee0gFe~NFe2NA!

3UqX,GsX,G2
NFe

~NFe2NA!
qFesFeU,

~63!
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emNA

ee0gFe~NFe2NA!
~qFesFe!

2

!qFeXsFeXNXUqX,GsX,G2
NFe

NFe2NA
qFesFeU,

~64!

where Eq.~61! is used for simplification ofb2 in Eq. ~51!;
Eq. ~62! is used for simplification ofb3 in Eq. ~51!; and Eqs.
~63! and~64! are used for simplification ofb4 . For the crys-
tal used in our experiments, the right-hand-sides of E
~61!–~63! are larger than their corresponding left-hand sid
by at least a factor of 200. This factor is 40 for Eq.~64!.
Using these approximations, the simplified formula for t
saturation space-charge fieldE1usaturationbecomes

E1usaturation5

2
tp

2
qFeXsFeXNANXkX,IRI IR1

emNA

gFe~NFe2NA!
T

, ~65!

where

T5
tp

2
qFeXsFeXNXFqX,IRsX,IRI IR0

1S qX,GsX,G2
NFe

~NFe2NA!
qFesFeD I GG1qFesFe.

~66!

Equation~65! can be rewritten in a form that is very usef
for understanding the main physical mechanisms respons
for recording by multiplying the numerator and the denom
nator of E1usaturation by I G , and comparing them with the
values ofn0 and NX0

2 averaged over one pulse width (0<t
<tp) given below byn0,aveandNX0,ave

2 ,

n0,ave5n001n01

tp

2

5
NA

gFe~NFe2NA!

tp

2
qFeXsFeXNX

3S qX,GsX,G2
NFe

~NFe2NA!
qFesFeD I G

2

1
NA

gFe~NFe2NA!

3S qFesFe1
tp

2
qFeXsFeXNXqX,IRsX,IRI IR0D I G ,

~67!

NX0,ave
2 5

tp

2
qFeXsFeXNXNAI G . ~68!

The resulting simplified formula for the saturation spac
charge field is
02381
s.
s

le
-

-

E1usaturation52
kX,IRNX0,ave

2 I IR1

emn0,ave
. ~69!

In the next section, we will use this formula to explain d
ferent experimental observations based on very basic ph
cal mechanisms.

2. Simplified formula for recording time constant

Using the approximations given by Eqs.~61!–~64!, we
can simplify Eq.~59! for the recording speed as

1

t r
5

1

tp
F em

2ee0

NA

gFe~NFe2NA!
qFeXsFeXNXS qX,GsX,G

2
NFe

NFe2NA
qFesFeD ~ I Gtp!21

em

ee0

NA

~NFe2NA! S qFesFe

1
1

2
qFeXsFeXNXqX,IRsX,IR~ I IR0tp! D ~ I Gtp!G . ~70!

Comparing Eqs.~70! and ~67!, we obtain the following
simple formula that can be used to explain the experime
observations based on simple physical mechanisms

1

t r
5

emn0,ave

ee0
. ~71!

H. Comparison with numerical solution

Figures 11~a! and 11~b! show the variations of saturatio
change in the index of refraction Dn5
2(n3/2)r 13E1usaturation~n, index of refraction at recording fre
quency! with recording and sensitizing intensities (I IR0 and
I G), respectively. In these figures, we have shown both a
lytical and numerical solutions as well as the experimen
results. As Fig. 11 shows, the agreement between the
lytical formula for E1usaturation@Eq. ~65!# and the numerical
solution is very good with all levels of assumptions and a
proximations involved.

Figures 12~a! and 12~b! show the variations of recording
speed (1/t r) with recording and sensitizing intensities, r
spectively. As in Fig. 11, we have shown analytical and n
merical solutions as well as the experimental results.
though the analytic solution from Eq.~70! shows the
appropriate qualitative variation of recording speed with
tensities, its deviation from the numerical solution is mo
than 10% for larger intensities, as shown in Fig. 12. One
the major sources of error in the analytic solution is the
proximation n0.n001n01t given by Eq.~29!. To obtain a
more accurate formula for the recording speed, we use
simplified formula given by Eq.~71!, but we calculaten0,ave
by time averagingn0 without making a linear approximation
To do this, we first replace the more accurate formula
NX0

2 from Eq. ~24! into the formula forn0 given by Eq.~29!
and rearrange the terms to obtain

n05
z12z2 exp~2t/tx!

z32z4 exp~2t/tx!
, ~72!
3-13
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where,tx is given by Eq.~25!, andz12z4 are defined by

z15qFesFeI GNA~qX,GsX,GI G1qX,IRsX,IRI IR0

1qFeXsFeXI GNA!

1qFeXsFeXI GNXNA~qX,GsX,GI G1qX,IRsX,IRI IR0!,

~73!

z25qFeXsFeXI GNXNA~qX,GsX,GI G1qX,IRsX,IRI IR0

2qFesFeI G!, ~74!

z35gFe@~NFe2NA!~qX,GsX,GI G1qX,IRsX,IRI IR0

1qFeXsFeXI G@NX1NA# !#1gFeqFeXsFeXI GNXNA ,

~75!

z45gFeqFeXsFeXI GNXNA . ~76!

In the next step, we calculaten0,ave by time-averagingn0
from Eq. ~72! over one pulse width (0<t<tp),

FIG. 11. Variation of the saturation value of the amplitude
the refractive index grating (Dn) with ~a! average infrared light
intensity I IR0 while green light intensity is fixed (I G

5105 GW/m2), and~b! green light intensityI G while infrared light
intensity is fixed (I IR05225 GW/m2). The modulation depth of the
infrared intensity was 1(I IR05I IR1) in both cases.
02381
n0,ave5
1

tp
E

0

tp
n0dt5

1

tp
E

0

tp z12z2 exp~2t/tx!

z32z4 exp~2t/tx!
dt

5
z1

z3
1

tx

tp
S z2

z4
2

z1

z3
D lnF z32z4

z32z4 exp~2tp /tx!
G .

~77!

Puttingn0,ave into Eq. ~71!, we obtain a more accurate an
lytic formula for the recording time constant. The variatio
of recording speed with sensitizing and recording intensi
using this more accurate formula is also depicted in Fig.
showing much better agreement with the numerical solut
than the approximate formula given by Eq.~70!. Therefore,
we have analytic formulas for both the saturation spa
charge field and recording time constant that agree very w
with both the numerical solution and experimental results

It is important to note that the analytic formulas becom
less accurate as we increase either the intensities or the p
width. This is due to the fact that increasing the energy
each pulse~by increasing either its intensity or its width!
results in stronger variation of the variables within one pu

f FIG. 12. Variation of recording speed (t r
21) with ~a! average

infrared light intensityI IR0 while green light intensity is fixed (I G

5105 GW/m2), and~b! green light intensityI G while infrared light
intensity is fixed (I IR05225 GW/m2). The modulation depth of the
infrared intensity was 1(I IR05I IR1) in both cases.
3-14
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and makes the approximation of the variables by a f
Taylor-series terms less accurate. However, the analytic
mulas derived in this section are good enough for most p
tical applications with current high-energy pulsed lasers. T
more significant usage of these formulas is the understan
of main physical mechanisms responsible for holograp
recording and using them for the explanation of the exp
mental observations. This is done in the next section.

VI. EXPLANATION OF THE EXPERIMENTAL
OBSERVATIONS

In this section, we use the two simplified formulas w
derived in the last section to draw a simple physical pict
for pulse recording mechanisms and use it to explain
experimental observations discussed in Sec. IV. In this s
tion, we assume thatI IR05I IR1 , in agreement with experi
mental conditions. Therefore, we useI IR0 when the variation
with recording intensity is involved. We repeat the simplifi
formulas~69! and ~71! here:

E1usaturation52
kX,IRNX0,ave

2 I IR1

emn0,ave
,

1

t r
5

emn0,ave

ee0
.

The formula for recording speed is similar to that for no
mal holographic recording with cw light in singly dope
LiNbO3 crystals. The only difference is that in the latter w
have the dc electron concentration in the conduction b
(n0) in place ofn0,ave, the time-averaged dc electron co
centration in the conduction band over one pulse width. T
formula for the saturation space-charge field is also simila
what we have in normal cw recording. This similarity
better understood by recalling that the total current densj
is zero at saturation~steady state!. Neglecting diffusion, we
can write the above statement mathematically as

j 1usaturation5 j ph11emn0E1usaturation50, ~78!

or

E1usaturation52
j ph1

emn0
. ~79!

If we assume that the dominant term in the bulk photovolt
current is that from the shallow traps due to the record
light, we can rewrite Eq.~79! as

E1usaturation52
kX,IRNX0

2 I IR0

emn0
, ~80!

where we assumedI IR15I IR0 . Equation~80! becomes the
same simplified formula we derived forE1usaturationif we re-
place NX0

2 and n0 by their time-averaged values over on
pulse width,NX0,ave

2 andn0,ave, respectively.
Although the physical mechanisms in two-step ho

graphic recording with high intensity pulses are similar
those of normal recording, the intensity dependence of
02381
r-
c-
e
ng
ic
i-

e
e
c-

d

e
o
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-

e

saturation space-charge field and recording speed in the
cases are different. This is due to the fact that the trap
sponsible for electron concentration in the conduction ba
and the one responsible for the bulk photovoltaic current,
the same in normal recording, while they are different
two-step recording. This can be easily understood from F
13 that shows the energy band diagrams of the two case
normal recording, the electron concentration in the cond
tion band is due to excitation from Fe traps by the record
light. The same traps are also responsible for the bulk p
tovoltaic effect caused by the recording light. Therefo
both j ph1 and n0 in Eq. ~79! depend linearly on recording
intensity. As a result, the saturation space-charge field
normal recording is independent of recording intensity.
the other hand, recording speed (1/t r) in normal recording
increases linearly with recording intensity sincen0 has this
intensity dependence.

In two-step recording, the electron concentration in t
conduction band is caused by three different paths: dire
from the deep traps by sensitizing light@path 1 in Fig. 13~b!#,
in two steps via the shallow traps by sensitizing light on
@path 2 in Fig. 13~b!#, and from the deep traps to the shallo
traps by sensitizing light; then from shallow traps to the co
duction band by recording light@path 3 in Fig. 13~b!#. The
strengths of these three mechanisms depend onI G , I G

2 , and
I GI IR0 , respectively. The time averaging ofn0 over one
pulse does not change this intensity dependence. This
plains the experimentally observed dependence of the
cording speed onI G and I IR0 shown in Fig. 12. At lower
intensities, electron excitation via path 1 in Figure 13~b! be-
comes dominant and the recording speed varies linearly w
I G while it is weakly dependent onI IR0 . As we increase
intensities, the two-step excitation mechanisms@paths 2 and
3 in Fig. 13~b!# become stronger. Therefore, we might o
serve a quadratic dependence (a1I G1a2I G

2 ) of the recording
speed withI G at very high intensities. We also observe
small linear increase of recording speed with increasingI IR0
while I G is fixed. During erasure with sensitizing light only
we also observe a quadratic dependence of the erasure s

FIG. 13. Mechanisms for excitation of electrons from deep tra
to the conduction band in a LiNbO3:Fe crystal for~a! normal re-
cording with low intensities, and~b! two-step recording with high
intensities. There are three different paths for electron generatio
two-step recording indicated by 1, 2, and 3. In part~b!, electron
transfer mechanisms caused by sensitizing~green! light are indi-
cated byG, and those caused by recording~infrared! light are indi-
cated by IR.
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~inverse of erasure time constant! with I G as we have similar
dependence of erasure time constant onn0,ave.

As Fig. 11 shows, the saturation hologram strength
creases linearly withI IR0 and decreases very slowly withI G .
The intensity dependence of the saturation hologram stre
in two-step recording~space-charge field orDn) has been
puzzling, as it is very different from normal recording. As
result, there has been no plausible physical explanatio
this dependence yet. However, we can easily understand
explain these puzzling observations using our simple mo
One important term in the saturation space-charge field is
time-averaged electron concentration in the shallow tr
NX0,ave

2 that depends on both populating and depopulat
mechanisms. The main populating mechanism is direct e
tron transfer from the deep traps by sensitizing light, as
trapping of conduction-band electrons by shallow traps
be neglected. The strength of this populating mechanism
pends onI G . On the other hand, depopulation of the shallo
traps within one pulse is due to excitation of the electrons
the conduction band by both sensitizing and recording lig
Note that direct electron transfer from shallow traps to de
traps is another depopulating mechanism. However, we
glect this mechanism during one pulse width~a few nanosec-
onds! due to a much longer lifetime of electrons in the sh
low traps ~a few milliseconds! as explained before. To
summarize, we expectNX0,ave

2 to increase withI G in a com-
plicated way and decrease with increasingI IR0 . With the
assumptions and approximations described before,NX0,ave

2 in-
creases linearly withI G , while it is independent ofI IR0 ~due
to the minor role ofI IR0 in depopulation of the shallow trap
within one pulse width!.

We are now ready to explain the intensity dependence
E1usaturationas we understand the intensity dependence of
terms involved in Eq.~69!. We expectE1usaturationto increase
linearly with I IR0 at lower intensities as bothNX0,ave

2 and
n0,aveare almost independent ofI IR0 at lower intensities. This
dependence onI IR0 becomes sublinear and finally turns in
independence fromI IR0 when we increaseI IR0 without limit
while I G is fixed. The latter behavior is due to the line
dependence ofn0,ave on I IR0 at higher values ofI IR0 . The
saturation space-charge field is almost independent ofI G at
lower intensities due to the approximately linear depende
of bothNX0,ave

2 andn0,aveon I G at lower intensities. The exac
dependence onI G is more complicated and depends also
the oxidation/reduction state of the crystal due to a m
complicated dependence ofNX0,ave

2 andn0,ave on I G that be-
comes more evident at higher intensities. Equation~49! de-
scribes a more complete dependence ofE1usaturationon sensi-
tizing and recording intensities. It can be seen from t
formula that when the oxidation/reduction state of the crys
is such that the coefficient ofI G in the denominator of
E1usaturation(b4) in Eq. ~49! is positive, the saturation space
charge field decreases with increasingI G . When the
oxidation/reduction state is such that this coefficient is ne
tive, the saturation space-charge field increases with incr
ing I G at normal intensities. If we increaseI G without limit,
the saturation space-charge field will finally decrease w
increasingI G regardless of the oxidation state of the cryst
02381
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as suggested by Eq.~49!. Note that Eq.~49! was derived by
assuming thatNX0,ave

2 }I G , as shown in Eq.~24!. Therefore,
the exact dependence ofE1usaturationon I G is more compli-
cated than was thought previously.

Although we focused above on the dependence of
saturation hologram strength and recording speed on se
tizing and recording intensities, our model can explain
dependence of these two variables on other parameters
example, we expect the recording speed to depend
NFe21 /NFe21 @or NA /(NFe2NA)#, since the main source fo
electron generation in the conduction band is electron c
centration in Fe traps (NFe21), and the main source for elec
tron trapping from the conduction band is the concentrat
of empty Fe traps (NFe31). Therefore,

1

t r
}n0,ave}

NFe21

NFe31
.

We also expect thatNX0,ave
2 }NFe21 as the shallow traps ar

populated by direct electron transfer from the deep tra
Putting the dependence ofNX0,ave

2 andn0,ave into the formula
for E1usaturation, we obtain

Dnusaturation}E1usaturation}
NX0,ave

2

n0,ave
}NFe31 , ~81!

which is in agreement with the experimental results depic
in Fig. 9.

To summarize, the simple model based on Eqs.~69! and
~71! gives us a complete understanding of the physi
mechanisms involved in two-step holographic recording w
high intensity pulses and helps us understand and explain
experimental observations that were not all explained bef

VII. CONCLUSIONS

We developed a full numerical solution as well as an a
proximate analytic solution for two-step holographic reco
ing in LiNbO3:Fe crystals. We found the unknown materi
parameters by fitting the numerical solution to the expe
mental results. The two important parameters that were
known so far and found in this work are the bulk photovo
taic coefficient and absorption cross section for the excita
of the electrons from small polarons in LiNbO3 with infrared
light ~see Table I!. The simplified analytic solution we de
veloped agrees very well with the numerical solution f
most practical applications. Furthermore, the analytic so
tion gives us a very good understanding of the physical p
cesses involved. Such a simple model also helps us exp
the experimental observations that were not understood
fore.

Although our method for obtaining an approximate an
lytic solution was applied to the problem of two-step hol
graphic recording with pulses, the developed strategy can
used in solving a wide variety of problems involving puls
of actions where each pulse is followed by a much lon
relaxation time.
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