
1E-mail: peter@fields.ioffe.rssi.ru.

Nuclear Instruments and Methods in Physics Research A 420 (1999) 202—212
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Abstract

An analytical saturation model for secondary electron multiplier detectors (SEM) has been developed. This model
describes SEM detector operation at high output currents when the significant part of the conduction current of dynodes
passes to the electron avalanche current and the dynode potential is nonuniformly redistributed. The following main
parameters of the SEM detectors in the saturated mode are predicted: the output current, conduction current and gain
depending on input current, the potential, electric field and electron avalanche current distribution along the dynode
system. A novel type of the SEM with nonlinear dynode resistance (SEM-NDR) that provides an extended dynamic
range is suggested. The model predictions are in good agreement with the experimental results. The samples of the
SEM-NDR have also been developed and investigated. ( 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Saturation effects have a very important influ-
ence on the operation of secondary electron multi-
plier (SEM) detectors. There are three types of
saturation effects that are described in the litera-
ture. First is space charge saturation, which arises
due to the decrease of the interdynode electric field
by the space charge of the electron avalanche [1—3].
The second type of saturation arises when the pos-
itive wall charge which is generated soon after the
electron avalanche neutralizes the dynode electric
field of the SEM [4]. The first type of saturation is
important for single channel electron multipliers
that have a high gain and large channel diameter
[5], while the second type is important for the
microchannel plates (MCP) with the straight chan-

nels [1,4]. Both types of saturation can also influ-
ence the operation of the discrete dynode SEM,
when the input of the detector is irradiated by very
short and high intensity pulses of particles [6].
Theoretical models for space and wall charge satu-
ration are described in a number of works and are
in good agreement with the experimental results
[4,7,8]. Space and wall charge saturation are ob-
served in the pulse operation mode of the detectors,
when the average frequency of the output pulses is
not high and the gain of the detector is completely
recovered between two pulses. However, when the
average frequency of the output pulses is high, the
gain of the detector cannot recover between two
pulses and a third type of the saturation (so-called
current saturation) arises [1,9]. In this case, a sig-
nificant part of the conduction current of dynodes
passes to the electron avalanche current (especially
in the end parts of the dynode system) and the
dynode potential and the interdynode electric fields
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Fig. 1. Diagram of the continual channel SEM (a) and the
potential distribution along the channel (b), for unsaturated (1)
and saturated (2) modes.

are nonuniformly redistributed along the dynode
system. Though the current saturation mechanism
is universal for all types of SEM detectors, most
works are devoted to the investigation of MCP
detectors because MCPs are strongly influenced by
current saturation effect due to the small conduc-
tion current of the channel on the one hand, and the
continuous expansion of the application field of the
MCP detectors on the other hand.

Different approaches have been used for the ana-
lytical description of the current saturation mode of
the MCP detectors. The MCP channels have been
presented as consecutively connected RC chains
whose parameters were found by numerical solu-
tion of the corresponding Kirchhoff equations [10].
The microscopic structure of the electric field inside
the channels were also considered in some works
[11,12]. Simple analytical models of MCP opera-
tion were suggested by many authors using, how-
ever, empirical dependencies that were found
experimentally [9,13—19]. Finally, probabilistic
models, where the MCP channels were presented as
paralysable and nonparalysable photon counters
have been developed [20—22]. Though the current
saturation of SEM detectors has been investigated
in many works, a model that should satisfactory
predict the main SEM parameters in the saturated
mode is not available [9,23]. The main impediment
for the development of such a model is the difficulty
of describing the electron avalanche behaviour in
the nonuniform electric field of the dynodes be-
cause the parameters of the electron avalanche de-
pend on the dynode electric field redistribution, but
at the same time this redistribution arises due to the
electron avalanche current. In the present work
a generalized analytical model of current saturation
for SEM detectors has been developed. Our model
predicts the following main parameters of the SEM
in the saturated mode: the potential and electric
field distribution along the dynode system, the elec-
tron avalanche current distribution, the output
current, conduction current and gain depending on
input current. A novel type of SEM with nonlinear
dynode resistance (SEM-NDR) that provides an
extended dynamic range has been suggested. The
predictions of the model are in good agreement with
the experimental results. The samples of the SEM-
NDR have also been developed and investigated.

2. Theory

2.1. Saturation model

Consider a SEM with a continuous dynode sys-
tem. It may be a single channel electron multiplier
(CEM) or MCP. As will be shown below, the results
to be found for the continuous dynode SEM are
also correct for the discrete dynode SEM. Let ¸,
R

0
and C be the length, resistance and capacitance

of the channel of the SEM (Fig. 1a). In the un-
saturated mode, when the average frequency of the
output pulses is less than 1/R

0
C, where R

0
C is the

time constant of the channel, the electron number
and the average electron current in the channel are
given by the well-known exponential law [1]:

K(x)"Kx@L
0

"e(x@L) -/ K0, (1a)

i(x)"i
0
K(x)"i

0
Kx@L

0
, (1b)

where, K(x) is the number of avalanche electrons at
a distance x from the channel beginning in the
single electron operation mode, K

0
the gain of the

SEM, i(x) the average electron current at the point
of x, i

0
the average input current of the detector.

The detector gain K
0

depends on the voltage
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º
0

applied along the channel as

lnK
0
"F(º

0
), (2)

where the function F(º
0
) may be determined ex-

perimentally and approximated analytically. The
output and conduction currents of the detector
are determined as i(¸)"i

0
K

0
and I

0
"º

0
/R

0
.

The potential and electric field distributions along
the channel in the unsaturated mode are
º(x)"º

0
(x/¸) and E(x)"E

0
"º

0
/¸, and the

condition i
0
K

0
@I

0
is realized.

When the output pulse frequency is increased,
the average output current is also increased and the
average conduction current is decreased in the end
parts of the channel because significant part of this
current passes to avalanche current. Since the elec-
tric field of a dynode is formed by the conduction
current, so this field is also decreased in the end
part of the channel. The decrease of the potential
and electric field in the end part of the channel leads
to their increase in the beginning parts of the chan-
nel. Thus, the nonuniform redistribution of the
dynode potential and electric field arises. The
exponential laws 1(a) and (b) for the electron
avalanche and average electron current become in-
correct in a nonuniform electric field, the detector
gain depends on output current, and is decreased
when the output current is increased.

As the input current i
0

is given to SEM, the
conduction current I

0
is increased by *I

0
and the

condition

I(x)#i(x)"I(0)#i(0)"I
0
#*I

0
#i

0
(3)

must be realized for any point x of the channel.
Since I(x)"dº(x)/dR and R(x)"R

0
x/¸, then

I(x)"
¸

R
0

dº(x)

dx
(4)

and the condition (3) may be rewritten in the form

¸

R
0

dº(x)

dx
#i(x)"I

0
#*I

0
#i

0
. (5)

Consider the element dx of the channel in which the
gain K(x) may be believed to be constant. The
avalanche current may be written:

di(x)"(di/dx)dx. (6)

In the unsaturated mode di/dx may easily be de-
rived from Eq. (1b) as

di/dx"
lnK

0
¸

dx. (7)

However, the expression (1b) is incorrect for the
saturated mode and the expression (7) cannot be
used directly. To overcome this difficulty we use the
following method. The potential distribution along
the channel in the saturated and unsaturated mode
is shown in Fig. 1b. The exact shape of the poten-
tial distribution in the saturated mode is unknown,
but it was considered in Fig. 1b that in this mode
the electric field (i.e., dº/dx) in the end part of the
channel is lower than that of in the beginning parts.
It may be seen from Fig. 1b that the gain K(x) at
the point of x in the saturated mode is the same as
that in the unsaturated mode, if in the latter case
the applied voltage is equal to º@

0
"¸ dº/dx, and

the gain K@
0

is determined as lnK@
0
"F(º@

0
)"

F(¸dº/dx). Thus, the expression (7) may be
used for the saturated mode if lnK

0
is substituted

by lnK@
0
. Taking into account these considerations

expression (6) may be presented as di(x)"(1/¸)
F(¸(dº/x))i(x) dx and considering Eq. (5) we find

di

dx
"

1

¸

iFA¸
dº

dxB,
¸

R
0

dº

dx
#i"I

0
#*I

0
#i

0
(8)

with initial conditions

i(0)"i
0
, i(¸)"Ki

0
, º(0)"0, º(¸)"º

0
. (9)

The solution of the system (8) taking into account
Eq. (9) gives the potential and electric field distribu-
tions º(x) and E(x)"dº/dx along the channel for
the different input currents i

0
, as well as the gain K,

the output current Ki
0

and the conduction current
I
0
#*I

0
depending on input current i

0
. All these

dependencies are found analytically for the first
time. The function F(º

0
) may be found experi-

mentally but an analytical expression for it is re-
quired to integrate the system (8). Measured curves
and some analytical approximations for F(º

0
) are

presented in Fig. 2. To restore the analytical ex-
pressions for F(º

0
) different approximations may

be used. The expressions F(º
0
)"(a ln bº

0
)/º

0
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Fig. 2. Linear (1), parabolic (2) and hyperbolic (3) approxima-
tions of the function F(º

0
)"ln K(º

0
) and the experimental

curves for the discrete dynode (VEU-1) (4) and MCP (channel
diameter — 18lm channel length-to-diameter ratio — 70) (5)
detectors. The detectors have been tested in a current operation
mode with a beam of 5 keV H`

2
ions.

and F(º
0
)"aº1@3

0
ln bº

0
were found for the

straight and curved channel electron multipliers,
respectively [24]. The approximation F(º

0
)"

a ln bº
0
!cº

0
may be used for the discrete dynode

SEM [25]. The parabolic F(º
0
)"a(b#º

0
)

(c!º
0
) and hyperbolic F(º

0
)"a(1!b/º

0
) ap-

proximations may also be used. In the present work
we use the linear function F(º

0
)"a(º

0
!b) [25]

as a zeroth approximation and the hyperbolic func-
tion F(º

0
)"a(1!b/º

0
) to find more precise

results. Evidently, the constants a, b and c that are
included in the expressions for F(º

0
) must be deter-

mined separately in every case.

2.2. “Ideal” detector model

The system (8) of the differential equations with
the linearly approximated function F(º

0
) is

di

dx
"

1

¸

lnK
0

º
0
!º

.*/

iA¸
dº

dx
!º

.*/B,

¸

R
0

dº

dx
#i"I

0
#*I

0
#i

0
,

where F(º
0
)"lnK

0
, F(º

.*/
)"0. The relative

values of º, i and x will be used in further consider-
ations: »"º/º

0
, j"i/I

0
, z"x/¸. Then

dj

dz
"bjA

d»

dz
!1#bB,

d»

dz
#j"1#a#j

0
(10)

with initial conditions j(0)"j
0
, j(1)"Kj

0
,

»(0)"0, »(1)"1, where a"*I
0
/I

0
, j

0
"i

0
/I

0
,

b"1!»
.*/

, b"lnK
0
/b. Using the relative

values of º, i and x we can provide universality to
the system (10) because in such a form this system
includes only three relative parameters a, b and
b that depend on the type of the detector.

Considering the second equation of the system
(10) in the first we find

dj

dz
"bj(a#b#j

0
!j).

The integration of this equation taking into ac-
count the condition j(0)"j

0
gives

j(z)"
a#b#j

0
1#[(a#b)/j

0
]e~b(a`b`j0)z

. (11)

Taking into account b"lnK
0
/b, the expression

(11) may be presented in the form

j(z)"
a#b

a#b#j
0
K(1`a@b)z

0

j
0
K(1`a@b)z

0
. (11a)

In the unsaturated mode a@b and j
0
K(1`a@b)

0
z@b.

Then Eq. (11a) takes the well-known form
j(z)"j

0
Kz

0
, that is identical with Eq. (1b) for the

unsaturated mode. The integration of the second
equation of system (10) taking into account the
condition »(0)"0 gives

»(z)"(1#a#j
0
)z

#

1

b
ln

a#b#j
0

a#b#j
0
exp[b(a#b#j

0
)z]

. (12)
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Fig. 3. Calculated conduction I and output i currents of the
“ideal” detector depending on the input current for the different
initial gains K

0
.

Considering the condition »(1)"1 in Eq. (12) we
find

K
0
j
0
"(a#b) (1!e~ab). (13)

The expression (13) gives the conduction current
1#a depending on input current j

0
.

The electric field distribution along the channel
is

E(z)"
d»

dz
"1#a#j

0

!

a#b#j
0

1#[(a#b)/j
0
] e~b(a`b`j0)z

. (14)

The detector gain K may be derived from Eq. (11)
using Eq. (13) and condition j(1)"Kj

0
. We find

K"K
0
. This is a most important result: the de-

tector gain behavior in the saturated mode is prede-
termined by the form of the function F(º

0
). For an

“ideal” detector, when the function F(º
0
) is linear,

the detector gain is not changed for any values of
the output current. It means that in the saturated
mode of the “ideal” detector the decrease of the
gain in the end parts of the channel is completely
compensated by its increase in the beginning part
of the channel. However, the function F(º

0
) is

nonlinear for “real” detectors and is slowly in-
creased for high º

0
(see Fig. 2). Therefore, in the

saturated mode, the gain of the end part of a “real”
detector is decreased more strongly than the in-
crease of the gain of the beginning part, and the
complete gain of the SEM is decreased.

Fig. 3 shows the calculated dependence of the
output and conduction currents on the input cur-
rent for the discrete dynode detector VEU-1 with
linearly approximated F(º

0
) (the detector VEU-1

will be described in Section 3). As we see, the de-
tector gain is not changed at high output currents,
and the conduction current is close to the output
current but these difference become constant ac-
cording to Eq. (13): 1#a!K

0
j
0
P1!b, when

aPR. It must be considered that the “ideal” de-
tector approximation is correct for “real” detectors
if the applied voltage º

0
corresponds to the

quasilinear part of the dependence F(º
0
) for the

“real” detector. Besides, the output current of such
a “real” detector must be limited so that the electric
field in the beginning part of the dynode system is

less than the critical value º
1
/¸, where º

1
is the

critical voltage that limits the quasilinear part of
the function F(º

0
).

2.3. “Real” detector model

As noted above, the hyperbolic approximation of
the function F(º

0
) is in good agreement with the

experimental curves F(º
0
) for “real” detectors. In

this case

F(º
0
)"lnK(º

0
)"A1!

º
.*/
º

0
BlnK

.!9
, (15)

where K(º
.!9

)"K
.!9

, K(º
.*/

)"1.
The consideration of Eq. (15) in Eq. (8) gives

dj

dz
"C1!(1!b)A

d»

dzB
~1

D lnK
.!9

,

d»

dz
"1#a#j

0
!j, (16)

j(0)"j
0
, j(1)"Kj

0
, »(0)"0, »(1)"1.
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Fig. 4. Calculated conduction I and output i currents of the
“real” detector depending on the input current for the different
initial gains K

0
.

Fig. 5. Calculated gains of the “ideal” (I) and “real” (II) de-
tectors depending on input current for the different initial gains
K

0
.

The integration of the system (16) taking into
account conditions j(0)"j

0
, and »(0)"0 gives

C
j

j
0
D
(1`a`j0)@(1~b)

"C1!
j!j

0
a#bDe*(a`b`j0)@(1~b)+z -/K.!9,

»"(1#a#j
0
)z!

1

lnK
.!9
Cj!j

0
!(1!b)ln

]A1!
j!j

0
a#bBD. (17)

The first equation of (17) can be presented in the
form

j(z)"j
0
Kz

0C1!
j!j

0
a#bD

(1~b) @ (1`a`j0 )
. (17a)

Since the conditions j
0
, j, a@b are realized in the

unsaturated mode, Eq. (17a) reduces to the well-
known form (1b): j(z)"j

0
Kz

0
. Now considering the

initial conditions j(1)"Kj
0
and »(1)"1 in the first

and second equations of (17) we find:

a lnK
.!9

"Kj
0
!(1!b) lnA1!

Kj
0

a#bB,
(1#a) lnK"Kj

0
#lnK

0
. (18)

Solving Eq. (18) we can find the detector gain K,
the output current Kj

0
and the conduction current

1#a depending on the input current j
0
. Consider-

ing K and a in Eq. (17) the dependencies j(z), »(z)
and E(z) may be found for different output currents.
Unfortunately, Eqs. (17) and (18) cannot be solved
analytically and the functions K( j

0
), a( j

0
), as well as

j(z), »(z) and E(z) may be found by numerical calcu-
lations. Figs. 4 and 5 show the calculated depend-
encies of the output current, conduction current
and gain on the input current. Note that these
curves have long been established experimentally
for all types of SEM detector, but have been found
analytically for the first time. Figs. 6 and 7 show the
potential and electric field distributions along the
SEM dynode system. As it may be seen, these
distributions are similar for the “ideal” and “real”
detectors, but the gain of the “real” detector is
decreased dramatically while the gain of the “ideal”
detector is not changed. Fig. 8 shows the electron
avalanche current distribution along the dynode
system. As we see, when the output current is low,
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Fig. 6. Calculated potential distribution along the channel for
the “ideal” (I) and “real” (II) detector at the different output
currents Ki

0
.

Fig. 7. Calculated electric field distribution along the channel
for the “ideal” (I) and “real” (II) detectors at the different output
currents Ki

0
.

Fig. 8. Calculated electron avalanche distribution along the
channel for the “ideal” (I) and “real” (II) detectors at the different
output currents Ki

0
.

the avalanche current increases exponentially ac-
cording to Eq. (1b) and the gain is slightly de-
creased. When the output current is high, the ava-
lanche current is increased exponentially only in
the beginning parts of the dynode system and is not
increased practically in the end parts due to satura-
tion effects. It means that the electric field in the end
part of the dynode system is strongly decreased and
is near to critical value º

.*/
/¸ that provides only

unit gain. Note that the avalanche current distribu-
tions for “ideal” and “real” detectors are also sim-
ilar for the fixed output current, but the gain of the
“real” detector is strongly decreased.

2.4. SEM detector with nonlinear dynode resistance

The dynode resistance of the conventional SEM
is uniformly distributed along the dynode system:
R(x)"R

0
x/¸. The dynode potential and electric

field distributions are also uniform in the un-
saturated mode. In the saturated mode, however,
the dynode potential and dynode electric field are
nonuniformly redistributed, as is shown in Figs. 6
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Fig. 9. Electric field distribution along the SEM-NDR channel
(a) and the diagram of the VEU-1 (b): R — resistive ring,
D — dynode.

and 7. Now consider a SEM with ununiformly
distributed dynode resistance. Let the dynode res-
istance be increased in the end part of the channel
more strongly than the linear law, and

R(x)"R
0
f (x), (19)

where f (0)"0, f (1)"1. Then the electric field of
the dynode in the end part is higher than that in the
beginning part. Assume that the function f (x) is
such that the electric field distribution in the un-
saturated mode is as shown in Fig. 9a, position 1.
As the output current is increased and saturation
arises, the distribution 1 continuously passes to
2 which is identical with the electric field distribu-
tion of the conventional SEM in the unsaturated
mode. When the output current is increased more,
the electric field distribution continuously passes
from position 2 to 3, which is identical with the
distribution of the conventional SEM in the
saturated mode (see Fig. 7). Thus, the saturation of
the SEM-NDR (i.e. passage 1P3) arises at an
output current that is many times higher than
the saturation currents of the conventional SEM
(passage 2P3). The equation that describes SEM-
NDR operation may be found from Eq. (10)

considering Eq. (19):

dj

dz
"jFAº0

d»

dzB,
d»

dzA
df

dzB
~1

#j"1#a#j
0

(20)

under additional conditions f (0)"0, f (1)"1.
Evidently, this system cannot be solved in the

general form and the function f (z) must be predeter-
mined analytically. The solution of the system (20)
for different types of the function f (z) gives the
optimized resistance distribution that provides the
maximum dynamic range of the SEM-NDR.
Fig. 9a shows that the optimal choice of the func-
tion f (z) is important because if the resistance of the
end part of the channel is too high, the electric field
in this part becomes more than the critical value
º

1
/¸. In this case the inverse nonlinearity effect

may arise, i.e. the gain of the saturated SEM-NDR
may be more than that of the unsaturated SEM-
NDR. It must be noted that the MCPs with the
nonlinear channel resistance have recently been
considered in Refs. [23,26], but an operation model
for such MCPs, as well as for the conventional
SEM was not available. The first test results of
MCP-NDR showed (the resistance of the end part
of MCP channel was &10 times more than that of
the beginning part, but the resistance distribution
f (x) along the channel was unknown) that such
MCPs have a high gain at the high output currents
(saturated mode), at which the gain of the conven-
tional MCPs is strongly decreased [23]. However,
the results for the low output current mode (un-
saturated mode) of MCP-NDR are not presented
in Ref. [23]. According to our theory, the inverse
nonlinearity effect may arise for the resistance rela-
tion 1:10 of the beginning and end part of the
channel and the gain of such MCP-NDR may be
low in the unsaturated mode.

3. Experimental results

Discrete dynode models of the SEM are routine-
ly used for the development of the theory of con-
tinuous dynode SEM. It is assumed that the
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Fig. 10. Measured potential distribution along the dynode sys-
tem of the detector VEU-1 at the different output currents Ki

0
.

Fig. 11. Measured electric field distribution along the dynode
system of the detector VEU-1 at the different output currents
Ki

0
.

channel of the SEM consists of a number of conse-
cutively placed discrete dynode, whose number de-
pends on the length-to-diameter relation of the
channel. The parameters of such discrete dynode
SEM are easily calculated and the results are in
good agreement with the experimental results for
the continual dynode SEM. In the present work we
have developed the saturation theory of the SEM
using the continous dynode model, but the discrete
dynode SEM has been used for the experimental
testing of the theory. As will be shown below, the
predictions of the theory are in good agreement
with the experimental results for both continuous
and discrete dynode SEM. A commercial discrete
dynode jalouise type multiplier VEU-1 with alumi-
nium dynodes has been used in our experiments
(Fig. 9b). The dynode number is 25 [5,27]. The
dynode resistance of this detector consists of small
resistive rings that are placed between dynodes.
These rings are cut from the lead glass tube, re-
duced in the hydrogen atmosphere and have a sur-
face resistivity that is identical to the resistivity of
the channel electron multipliers. The resistance of
every ring is equal to 2.4M), and the complete
resistance of the dynode system is 30M). VEU-1
was placed in the mass-spectrometer MI-1201 and
was tested in a current operation mode with a beam
of 5 keV H`

2
ions. The ion beam current was mea-

sured with high precision Faraday cups. The ion
current was controlled by changing the emission
current of the ion source [28]. The output current
of VEU-1 was measured with a microammeter. The
dynode potentials were measured with a voltmeter
at special contacts which are connected to dynodes
1, 3, 5,2, 25. The input resistance of the voltmeter
was many times higher than the interdynode resist-
ance and could not influence the value of the latter.
Figs. 10 and 11 show the measured distribution of
the potential and electric field along the dynode
system for the different values of the output current.
The comparison of these curves with Figs. 6 and
7 shows that the model predictions are in good
agreement with the experimental results. We could
change the dynode resistivity of the detector by
substitution of the resistive rings to provide SEM-
NDR. However, we could provide only step up
dynode resistivity (but a quasicontinuously chang-
ing resistivity is desirable) because the resistive
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Fig. 12. Measured conduction (I) and output (II) currents de-
pending on the input current for the conventional SEM (1), first
(2) and second (3) SEM-NDR, and bare MCP detector (4).

Fig. 13. Measured detector gain depending on input current for
the conventional SEM (1), first (2) and second (3) SEM-NDR,
and bare MCP detector (4,5).

rings with the optimal parameters were not avail-
able. The resistances of the rings between dynodes
1—8, 9—16 and 17—25 were R, R and 2R for the first
SEM-NDR and 0.5R, R and 2R for the second
SEM-NDR, respectively. The output current, con-
duction current and gain of VEU-1 were measured
for the conventional and nonlinear dynode resist-
ance distributions. Figs. 12 and 13 show that the
resistance distribution of the first SEM-NDR pro-
vides a significant extension of the dynamic range,
while the second distribution leads to an inverse
nonlinearity effect and the gain of such an SEM-
NDR in the saturated mode is higher than in the
unsaturated mode.

We also studied the saturation characteristics of
a bare MCP. This experiment was described earlier
in detail [28] and we present only some curves in
Figs. 12 and 13. Note that, similar curves for the
MCP detectors were found in many works and are
in good agreement with the model predictions.

4. Conclusions

The described saturation model may be used for
all types of the SEM detectors with continuous and
discrete dynode systems, as well as for photomul-
tipliers and it is useful to point out the following.

Although the function F(º
0
) must be known

a priori before the saturation properties can be
estimated, this function can easily be restored by
the computer fitting using the experimental de-
pendence K(º

0
) for unsaturated mode, and the

system (8) can be numerically integrated.
The solution of this system gives the main para-

meters of the SEM detectors in the saturated mode
that extends the dynamic range of these detectors.

Second, the dynode resistivity distribution func-
tion f (x) may be optimized by the testing of the
different types of f (x). It allows the development of
a novel SEM-NDR, particularly the MCP-NDR
with the strongly extended dynamic range.

Finally, the predicted channel potential distribu-
tion function may be used to study the “adjacency
effect” of the MCP channels [22,28] that was ob-
served experimentally in [29] for the first time but
was not modelled and studied theoretically.
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