SHG imaging: From molecules to tissues

朱士維 台大物理系

Outline

Introduction

- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 Material science
 - GaN material properties mapping
 - 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary

Optical microscopy

Important issues
 Contrast
 Resolution
 Penetration depth
 Noninvasiveness

Bright field microscopy

Advanced microscopy

Dark field microscopy ✓ Contrast enhanced DIC or PC microscopy ✓ Contrast enhanced Fluorescence microscopy ✓ Contrast enhanced XNo deep tissue observation Due to blurring **X**Staining required

Contrast enhanced
 Resolution enhanced
 Due to the rejection of out-of focus light
 Optical section

Single photon confocal microscopy

LASER **BEAM**

Inefficient collection
 Out of focus fluorescence
 Out of focus photobleach
 Out of focus photodamage
 Low penetration depth

Two photon fluorescence (2PF) imaging

- Optical sectioning (automatically confocal)
 - High axial resolution
- Minimized out-of-focus absorption
 - Minimized out of focus photobleach/photodamage
- High penetration depth

W. Denk et al., Science 248, 73 (1990)

Problems of 2PF microscopy

- Limited penetration depth in live tissues
 - (~ 150 µm @ 800 nm)

- Require in-focus two-photon absorption in labeling dye or auto-fluorescent pigment¹
- Photo-bleaching and photodamages
 - Due to single and multi-photon absorption with NIR²
 - To fluorescent and non-fluorescent absorbers
- Limited dye penetration and toxicity issue
- Limited dye availability for structure labeling
- Explore alternative spectral range and intrinsic imaging modality

-> Harmonics optical microscopy (HOM)

Denk *et al.*, *Science* 248, 73 (1990)
 König *et al.*, *Opt. Lett.* 22,135 (1997)

Outline

Introduction Principles of optical harmonics Experimental setup Applications of harmonics imaging □ Material science □ GaN material properties mapping □ 3D Electric field visualization Biological science Bio-photonic crystal probing

- Tissue imaging
- Summary

Optical harmonic generations

Virtual transition → Energy conservation
 Resonant enhancement

Second Harmonic Generation

Third Harmonic Generation

 $h\nu$

 hv_3

$$2hv_1 = hv_2$$

 $3hv_1 = hv_2$

Second harmonic generation $P^{NL}(2\omega) = \frac{1}{2} \varepsilon_0 \chi^{(2)} (2\omega; \omega, \omega) E(\omega) E(\omega)$ $\blacksquare I(2\omega) = I(\omega)^2$ Auto-sectioning capability Allowed only in non-centrosymmetric media¹ Imaging selectivity Surfaces and interface² Membrane potentials^{3,4} Uniform polarity tissue^{5,6} Bio-photonic crystal effect^{7,8} (structural proteins⁹) 1. Y. R. Shen, *The Principles of Nonlinear Optics*

- 2. Y. R. Shen, *Nature* 337, 519(1989) 3. L. Moreaux et al., Opt. Lett. 25, 320 (2000). 4. G. Peleg, et al., PNAS. 96, 6700 (1999).
- 5. I. Freund et al., Biophys. J. 50, 693 (1986).

- 6. Y. Guo, et al., Opt. Lett. 22, 1323 (1997).
- 7. S.-W. Chu, et al., Opt. Lett. 26, 1909 (2001).
- 8. S.-W. Chu, et al., J. Microscopy 208, 190 (2002).
- 9. P. J. Campagnola et al., Biophy. J. 81, 493 (2002).

Third harmonic generation

P^{NL}(3ω)= ¼ ε₀ χ⁽³⁾ (3ω:ω,ω,ω) E(ω)E(ω)E(ω)
 I(3ω) = I(ω)³
 Better sectioning capability
 Interfaces with optical inhomogeneity
 Contour imaging

D. Yelin and Y. Silberberg, *Opt. Express* 5, 169 (1999)M. Muller *et al.*, *J. Microscopy* 191, 266 (1998).

Why harmonics?

Multi-photon Fluoresecence Harmonics Generation

Optical Sectioning

Deeper penetration due to IR wavelength

In- focus absorption/photobleaching

In-focus photo-damageStaining or auto-fluorescence

X Strong λ dependency

- No energy deposition/No absorption/photobleaching
- ✓ No photo-damage
- Endogenous (No staining required)
- \checkmark Weak λ selectivity

Outline

Introduction Principles of optical harmonics Experimental setup Applications of harmonics imaging ■ Material science □ GaN material properties mapping □ 3D Electric field visualization Biological science Bio-photonic crystal probing □ Tissue imaging Summary

Excitation wavelength selection

Lowest attenuation around 1200 ~ 1300-nm

- Deepest penetration in biological specimens
- Both SHG and THG fall in visible regime
- Reduced multiphoton fluorescence (v.s. 800-nm)
 - Reduced photodamage
- Fiber compatible
- Insensitive to silicon detectors

Outline

Introduction Principles of optical harmonics Experimental setup Applications of harmonics imaging Material science GaN material properties mapping 3D Electric field visualization Biological science Bio-photonic crystal probing □ Tissue imaging Summary

GaN introduction

GaN

Green-UV optoelectronic devices (LD, LED).
High-power/high-speed electronic devices.
Physical properties are strongly affected by
Defect states
Large residue piezoelectric field due to unrelaxed strain
Both create spectral red-shift and is hard to distinguish in a single-point spectral measurement

GaN LED at 395 nm (LEDTronics # L200)

Motivation

 Observation of electric-field enhanced SHG in GaN¹

 $P(2\omega) = \varepsilon_0 \chi^2 (2\omega; \omega, \omega) E_{laser} E_{laser} + \varepsilon_0 \chi^3 (2\omega; \omega, \omega, 0) E_{laser} E_{laser} E_{residue}$

J. Miragliotta & D. K. Wickenden, Phys. Rev. B, v. 53, 1388 (1997).

- With a 1230-nm Cr:forsterite fs laser
 - SHG at 615-nm
 - Piezoelectric-field enhanced
 - Off-resonance
 - THG at 410-nm
 - Bandtail state resonant
 - Defect related

B. Guo et al., Appl. Phys. B 80, 521 (2005).

Nonlinear emission from a bulk GaN

SHG at 615-nm

- Far from GaN resonance
- THG at 410-nm

Resonant with the bandtail state

Power dependency

Confirming 2nd and 3rd order nonlinearity

HOM imaging

THG

IR Transmission

THG \rightarrow bandtail state distribution

- SHG → piezoelectric field distribution
- Bandtail state density $\uparrow \rightarrow$ piezoelectric field intensity \downarrow

C.-K. Sun & S.-W. Chu et al., *APL* 77, 2331-2333 (2000) C.-K. Sun & S.-W. Chu et al., *Scanning* 23, 182-192, **invited paper** (2001)

HOM v.s. PL imaging

Bandgap luminescence (365nm)

Defect-state yellow luminescence (550-600nm)

Bandtail state

Piezoelectric field

bandgap luminescence ↓ → yellow luminescence ↑
→ defect-related bandtail state density ↑
→ piezoelectric field ↓ → strain relaxation

But requires two lasers for imaging

C.-K. Sun et al., APL 76, 439 (2000).

Multiphoton excitation

5-µm bulk GaN grown on sapphire

4-photon fluorescence observed!
 With a single 1230 nm source
 4PF in semiconductor for the first time

S. W. Chu, Opt. Lett. 30, 2463-2465 (2005)

Resolution comparison

- The better axial resolution of 4PF over THG and SHG is demonstrated
- Peak position
 - THG: air/GaN interface
 - SHG: GaN/sapphire interface
 - 4PF: bulk contribution

Potential for spin imaging

Right circularly polarized

∆E from gradientof electrondensity

Left circularly polarized

 ΔM (spin polarization) is opposite in +x and -x directions

In GaAs/AlGaAs two dimensional electron gas
 Pump-probe SHG measurement

Han et al., APL 91, 202114 (2007)

HOM in semiconductor

We demonstrated laser scanning SHG, THG microscopy in bulk GaN: SHG to map piezoelectric field THG to map bandtail state bandtail state (defect) density \rightarrow piezoelectric field \downarrow → bandgap PL ↓ → yellow luminescence ↑ Brand new method to find out the distribution of piezoelectric field and defect state in GaN bulk and MQWs. Potential for spin mapping

Electrical field visualization

Electric probe Require metal contact Invasive and indirect Optical probe E-O sampling¹ Probe head required Low 3D resolution Mapping, not visualization Electrical Field Induced Second Harmonic Generation (EFISHG)

Characteristics of EFISHG

Electric Field Induced Second Harmonic Generation

• $P(2\omega) = \varepsilon_0 \chi^3 (2\omega; \omega, \omega, 0) E_{laser} E_{laser} E_{applied}$

 $\rightarrow I_{\rm EFISHG} \propto (I_{\rm laser})^2$

 $I_{
m EFISHG} \propto (E_{
m applied})^2 \propto (V_{
m applied})^2$

 \diamond Intrinsic sectioning power \rightarrow 3D visualization

Sub-μm resolution

Ability of measuring electric field vector E

Visualize E-field by EFISHG

Surface EFISHG

Silicon MMIC¹ & Si/ /SiO₂ heterojunction²

Only at interface or surface

No 3D imaging capability

GaN EFISHG³

3D E-field imaging
 Strong residual SHG
 EFISHG in liquid crystal

C. Ohlhoff, APL 68, 1699 (1996)
 J. I. Dadap, PRB 53, R7607 (1996)
 C. K. Sun, APL 77, 2331 (2000)

HOM with EFISHG in liquid crystal

Advantages: High EFISHG efficiency Background free 3D E-field visualization Measure both amplitude and direction Transparent Non-conducting Easily available

Integrated-Circuit-Like Sample

SHG confirmation

of liquid crystal (30V)

EFISHG confirmation

I-H. Chen & S.-W. Chu, Opt. Lett. 28, 1338-1340 (2003)

E-field visualization Amplitude reconstruction

Electric field in neuron

SHG imaging for neural action potential visualization

Sacconi, PNAS 103, 3124 (2006)

Electric field in neuron

Polarization anisotropy of SHG on neurons The molecular orientation is deduced

Jiang, Biophys J. 107, L26 (2007)

HOM for E-field visualization

HOM with EFISHG in LC
 ■ First 3D E-field visualization
 ■ Sub-µm spatial resolution
 ■ Background free
 ■ Obtain E-field vector
 ■ Z-component → sample rotation
 ■ Action potential in neuron

Outline

Introduction

- Principles of optical harmonics
- Experimental setup
- Applications of harmonics imaging
 Material science
 - GaN material properties mapping
 - □ 3D Electric field visualization
 - Biological science
 - Bio-photonic crystal probing
 - Tissue imaging
- Summary

SHG imaging in biological tissues

Cellulose in cell wall of maize stem

Starch and grana in mesophyll cells

Collagen of tendon fiber

Myosin in muscle fiber

Hint of crystallinity

No labeling at all!

Nonlinear photonic crystal

 χ⁽²⁾ existed even with pump frequency not close to photonic bandgap.

Nonlinear bio-photonic crystal

- First observed in bR (~ 5-nm period)
- Strong SHG is observed
 - No SHG after bR was hydrolyzed

Bacteriorhodopsin (bR) on purple membrane

K. Clays, JOSA B 18, 1474 (2001).

Lots of orderly-arranged nano-structure in biology

- Stacked membranes: starch granule, grana, mineral deposition
- Arrayed microtubules: cellulose microfibrils, myofibrils in a muscle fiber, and collagen bundles, etc.

Nonlinear biophotonic crystal

Mitosis spindle of a zebrafish blastoderm THG + SHG

SHG

 Crystallized microtubule array
 Diminished after the microtubules dispersed

 THG

 Cellular and nuclear plasma membranes

Biophotonic crystal

Can we find the arrangement symmetry of underlying molecules by SHG?
 Active molecule identification
 Molecular structural/packing information elucidated

SHG of starch

Bright field

Polarized microscope

SHG

Molecular origin of starch SHG Amylopectin¹ or amylose²?

Japonica rice Amylopectin: 86% Amylose: 14%

Japonica waxy rice Amylopectin: 99% Amylose: 1%

SHG from Japonica waxy rice is 15% stronger

→ SHG from amylopectin!!

- 1. S.-W. Chu, *J. Microscopy*, **208**, 190 (2002)
- 2. G. Cox, J. Biomed. Opt. **10**, 024013 (2003)
- 3. In preparation to Biophys J

SHG of starch Full χ⁽²⁾ tensor and molecular orientation are deduced

 $SHG \propto \left(\chi_{16}^{(2)} \sin 2\theta\right)^2 + \left(\chi_{21}^{(2)} \sin^2 \theta + \chi_{22}^{(2)} \cos^2 \theta\right)^2$ $\chi^{(2)} = \chi_{16}^{(2)} \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0.23 \pm 0.09 & 0.95 \pm 0.04 & 0.23 \pm 0.09 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$

SHG in muscle

From myosin filaments, not actin

actin

Plotnikov, *Biophys. J.* 90, 693 (2006)

2D Bio-photonic crystal in animal

Muscle fibers

Full χ⁽²⁾ tensor is resolved
 Based on cylindrical symmetry assumption

$$\chi^{(2)} = \chi_{31}^{(2)} \begin{bmatrix} 0 & 0 & 0 & 0 & 1.15 & 0 \\ 0 & 0 & 0 & 1.15 & 0 & 0 \\ 1 & 1 & 0.09 & 0 & 0 & 0 \end{bmatrix}$$

S.-W. Chu, Biophys. J. 86, 1 (2004)

SHG from myosin Polarization anisotropy SHG from coiled-coil filaments of myosin The inclination angle of molecular coil is determined by fitting the anisotropy 61.2 deg, matching X-ray diffraction results

SHG anisotropy

Muscle

Tiaho, Opt. Express 15, 12286 (2007)

Selective imaging by SHG

Biological tissues usually entangle with each other
 e.g. muscle fiber & collagenbased endomysium
 Both exhibit strong SHG
 How to selectively observe them without staining?

Endomysium

Polarization based selective imaging

Over 100-fold contrast enhancement

Laser polarization + Polarizer + + +

Laser polarization

Laser polarization + Polarizer

Laser polarization Polarizer

Chu, APL 91, 103903 (2007)

Emission dipole based selective imaging

Muscle fibers: FSHG dominated
Collagen: both FSHG and BSHG

Forward-SHG Polarizer ← → Backward-SHG No polarizer

Chu, *J Biomed Opt* 14, 010504, 2009

BSHG vs. FSHG

They do not overlap well BSHG does not come merely from backscattering

BSHG

FSHG

B+FSHG

Laser polarization Polarizer 1

BSHG vs. FSHG

Thickness determination in a collagen fibril

Chu, Opt. Express, 15, 12005 (2007)

Thickness of a collagen fibril

Determined by FSHG/BSHG ratio
 Ten nanometer precision

Virus imaging

No labeling is required

Normal cells

Infected cells

Nuclear polyhedrosis viruses in living cells SHG to locate the virus THG to outline the cells

Liu, Opt. Express 16, 5602 (2008)

SHG polarimetry

Body-centered-cubic arrangement of polyhedrin trimers was found from the virus

Future prospect

SHG is sensitive to molecular structure
Membrane / thin-film study
Spin dynamics mapping
Electric field visualization
Thermal effect probing
Deep tissue imaging

Summary for HOM Issues of optical microscopy Contrast Greatly enhanced Function/structure specificity Resolution ■ 300-nm for THG, 400-nm for SHG in our case Penetration depth ■ > 1.5-mm Noninvasiveness Long-term embryonic observation No exogenous labeling

Summary for HOM Very good candidate for Material characteristics mapping E-field 3D visualization Bio-photonic crystal probing Developmental biology And much more.....

Acknowledgement

My lab ■ 卓宗衍 ■ 游鈞彦 ■ 曾鈺懿 ■廖建盛 UFO/NTU ■ 孫啟光教授 ■ 陳嘉維博士 ■ 戴世芃博士 ■ 陳毅修 ■ 陳政吉

■ 陳思妤

 台大漁科所
 蔡懷禎教授
 林正勇
 生物技術開發 中心(DCB)
 林白翎博士
 陳勇志

■ 陳振銘

劉子銘博士
 戴世范博士
 林奇宏教授
 陳毅修
 蕭一清博士
 陳政吉
 何佳霖

UCSB

- Prof. S.P.Denbaars
- P. Fini
- NYSU/Buffalo

■ 鄭炳今教授

