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Electro-optic sampling system with a single-crystal
4-N,N-dimethylamino-4 ’-N’-methyl-4-stilbazolium tosylate sensor
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We present an electro-opti(EO) sampling system based on an organic ionic salt crystal,
4-N,N-dimethylamino-4N’'-methyl-4-stilbazolium tosylate(DAST) transducer. Compared to
LiTaO;, the DAST lower dielectric permittivity and much higher electro-optic coefficient
dramatically improveme electric-field coupling into the EO crystal, which results in a much better
signal-to-noise ratio of the sampling system. Submillivolt signals can be easily measured with the
DAST sensor. Time resolution of the DAST-based EO system is the same as that of the
LiTaO5-based sampler. @003 American Institute of Physic§DOI: 10.1063/1.1565508

The organic ionic salt crystal 4-N,N- and proposed a DAST-based, wideband, electric field
dimethylamino-4-N’-methyl-stilbazolium tosylat¢DAST) sensort? intended to replace conventional metallic probes in
is a very promising nonlinear optic8LO) material. DAST  high-frequency, high-electric-field testing. Other implemen-
has been demonstrated to have a very large NLO susceptations of DAST single crystals include EO modulatbts?
bility and the largest electro-opti€O) coefficient of all ma-  gratings'® frequency doublers, and optic parametric oscilla-
terials researched to ddate> Originally designed for EO ap- tors in the near infraretf~1°
plications, the material has its charge-transfer axis of the In this letter, we demonstrate the use of DAST in an EO
stilbazolium chromophore deviating only 20° from the polarsampling systeR? by measuring picosecond duration, sub-
axis of the crystal, which is an arrangement well optimizedmillivolt amplitude photoresponse transients, generated by
for linear electro-optics. Like other organic crystals, the NLOfemtosecond optical excitation of a metal-semiconductor—
effects in DAST originate from the extendedelectron sys- metal (MSM) diode. The diode was fabricated on a low-
tem, so its response time is very shbth addition, DAST temperature (LT)-grown GaAs free-standing crystal and
has much lower values of the dielectric constantg<5.2,  transferred onto a coplanar waveguit@PW) on a MgO
ep=4.1, ande.=3.0) as compared to conventional inorganic substraté! We report on the DAST performance as an EO
EO materials such as LiTaO(e,=e,=41, e.=43), or  sensor by comparing it with the conventional LiTagensor
LINbO3 (ea=ep=44,e.=29). All of the above characteris- that has been used for EO sampling for the last two
tics make DAST an ideal material for broadband EO appli-decade£°
cations, such as EO switches, modulators, or sensors. The DAST sample used in our experiments was pur-

Shortly after the first DAST single crystals were synthe-chased from Rainbow PhotonitXlt is a dark red, platelet-
sized, many efforts were undertaken to implement this mateype single crystal with the following dimensions: 4.2, 1.6,
rial to ultrafast optoelectronic systems. The most successf{ng 0.295 mm along tha, b, andc crystallographic axes,
application of DAST was in the THz-frequency regime for respectively. The two optical surfaces have been polished to
generation and detection of free-space propagating THZagch an optical flatness of abontd-\/2 (\ =632.8 nm),
pulses. Zhanget al. observed the THz radiation generated yeasured by a polarizing microscope. DAST belongs to the
from DAST by optical rectificatiorf,and, subsequently, other monoclinic space grouCc (point groupm, z=4). The
groups successfully generated THz pulses with center freéngles between the dielectric axesandx; and the crystal-
guencies much higher than thpse obtai_ned frgrr;oinorganiﬁ)graphiC axesa and ¢ are 5.4° and 3.2°, respectively,
THz emitters, such as ZnTe, LiTgOor LINDO;.""Han hareas the, axis coincides with thé axis® Designing our
etal. were the first to use DAST for THz radiation g, neriment, however, we ignored these small mismatch
detection! Subsequently, Litzt al. extended this technique angles and assumed for simplicity that the dielectric and
crystallographic axes coincided.
dAlso at: the Department of Physics and Astronomy, University of Roches- The schematics of our experimental setup is shown in
b’tAeIrs'oRc;i:hetflfr’In’\?t?tife&o?f. Physics, Polish Academy of Sciences, PL—FIg' 1. The excitation beam and the pro@amplmg be.am

02668 Warszawa, ~ Poland;  electronic ~ mail: roman.sobolewski@VE€re generated by the same commercial Ti:sapphire laser
rochester.edu and consisted of trains of 100-fs-wide, 810-nm-wavelength
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FIG. 1. Schematics of the EO sampling experiment using the DAST transducer. Note the orientation of the DAST crystal. The inset shows a micrograph of
our test sample details. The MSM finger width wagu® and the finger spacing Am.

pulses at an 82 MHz repetition rate. The excitation beanmirror canceled out the effect of static birefringence in a way
passed through a X0, 50-mm-working-distance microscope that was equivalent to using two identical DAST crystals that
objective and illuminated the MSM diode, shown in the insetare rotated 90° with respect to each otli@n arrangement
in Fig. 1. The diode was patterned on a 150frequently found in EO sensors exhibiting large static bire-
X 150 um? area, free-standing LT-GaAs crystal and incorpo-fringence. The temporal separation ef1.3 ns between the
rated into the Ti/Au CPW that interconnected the MSM di-first and the second transmission of the probe beam through
ode. The entire structure was fabricated on a MgO substratghe DAST crystal(determined by the beam total traveling
Detailed discussion on characteristics and properties of freedistance of~40 cm), together with the physical separation
standing LT-GaAs devices transferred onto various substratey the probe spots, guaranteed that during the second trans-
have been given by us elsewhété® The probe beam mission through the DAST sensor, the probe beam would
passed through a polarizer, a half-wa¥\) plate, and the experience no polarization change due to the photoresponse
same microscope objective as the excitation beam, beforgignal we studied.
reaching the DAST crystal, which was overlaid on top of A second polarizer at the end of the probe-beam optical
CPW. Next, the probe beam passed through therh@ap in ~ path was used as an analyzer to measure the polarization
the CPW electrodes, and its spot size at the CPW gap waghange that occurred during the first pass through the DAST
<10 um (see the inset in Fig.)1 crystal, due to the electrical transient generated by the pho-
As shown in Fig. 1, the axis of the DAST crystaflong  toexcited MSM diode. The compensator, placed before the
edge was oriented parallel to the electric field of the photo-analyzer, was used to optically set th& operation point on
response transients propagating along the CPW. The Hwhe EO sensor transform function, which corresponds to the
plate was rotated such that the polarization of the probdinear operation regime. Finally, the probe signal was de-
beam entering DAST was 45° with respect to the cryatal tected by a pair of balanced, 1-GHz-bandwidth, low-noise
axis. This arrangement gave us the highest EO modu|atioﬁh0t0reCeiverS. A lock-in-based, differential mode of detec-
effect of DAST in the way of a polarimeter. To overcome thetion was implemented to eliminate the laser-amplitude-
problem of losing coherence due to the huge static birefrinfluctuation noise and double the measured signal amplitude.
gence of DAST (,~2.46,n,~1.68, at the 805 nm wave- The lock-in output signainot shown in Fig. 1was fed to a
length, we implemented the transmission geometry, whichcomputer data acquisition system, where it was calibrated,
was first used by Haet al in their study of DAST as a averaged over a desired number of traces, and displayed on
THz radiation detector. After the MgO substrate, the probghe monitor.
beam traveled through a quarter-wai@Ww) plate, was re-
flected by a concave mirror (EFL100 mm), and again ' ' ' '
passed through the QW plate and the DAST crystal. The fast
axis of the QW plate was aligned 45° with respect to ¢he
axis of the DAST crystal. Since the double pass through the
QW plate is equivalent to a single pass of a HW plate, the
initial a component of the probe-beam polarization was ro-
tated by 90° to become B component, and the initiab
component became aa component. When the sampling
beam went through the DAST crystal for the second time, its E /
a component, which experienced, during the first time L i ¥ L L
pass, experiencet, for this time, and vice versa. Therefore, Time (10 ps/div)
the effect of the DAST's static birefringence was canceletk g, 2. comparison between the photoresponse transients measured under

out. In other words, the use of the QW plate and the concavee same experimental conditions using the DAST and LiTa@nsducers.
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0.3 T T T - while demonstrating the same time resolution, exhibited a
significantly improved electric-field coupling and resulted in

% 06 measurements with an excellent signal-to-noise ratio. The
= submillivolt sensitivity and picosecond time resolution of the

% 04 DAST-based EO samplers, make them practical for charac-
2 terization of very-high-speed, very-low-power electronic cir-

2 02 cuits. Using a suitable light source, the DAST can be used to

§ test Si, GaAs, or other semiconductor devices, which are

& 00 opague at the wavelength that we used in this work.
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