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Semiclassical calculation of the vibrational echo
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The infrared echo measurement probes the time scales of the molecular motions that couple to a
vibrational transition. Computation of the echo observable within rigorous quantum mechanics is
problematic for systems with many degrees of freedom, motivating the development of
semiclassical approximations to the nonlinear optical response. We present a semiclassical
approximation to the echo observable, based on the Herman—Kluk propagator. This calculation
requires averaging over a quantity generated by two pairs of classical trajectories and associated
stability matrices, connected by a pair of phase-space jumps. Quantum, classical, and semiclassical
echo calculations are compared for a thermal ensemble of noninteracting anharmonic oscillators.
The semiclassical approach uses input from classical mechanics to reproduce the significant features
of a complete, quantum mechanical calculation of the nonlinear respon&0® American
Institute of Physics.[DOI: 10.1063/1.1633550

I. INTRODUCTION tive, the full validation of the semiclassical method requires
calculation of a nonlinear observable.

In principle, the absorption line shape of a vibrational ~ To lowest order in perturbation theory in the radiation-
transition reflects the dynamics of nuclear degrees of freematter interaction, evaluating the observable in a two-pulse
dom that interact with the transition. In practice, the spectrabr three-pulse vibrational echo measurement requires calcu-
line shape may be dominated by slow dynamics, obscuringation of the third-order response functid{®)(ts,t,,t;).*
its full information content. Coherent multiple-pulse infrared We present here semiclassical calculationdR69(t3,01;),
measurements, analogous to pulse sequences of multidimemwhich is relevant to the two-pulse echo observable in the
sional NMR? can sort spectral line broadening dynamics acdimit of impulsive excitation. This quantity is computed with
cording to time scale, thereby probing nuclear dynamics irthe approach of Ref. 29 for a thermal ensemble of noninter-
the ground electronic stafe® Such measurements, including acting Morse oscillators. The formalighis reviewed in Sec.
the two-pulse and three-pulse Vvibrational echoll, and general numerical strategies are discussed there. The
experiments;°~'® have been successfully applied to liquid model is also described in Sec. II, and the particular numeri-
state and biomolecular systems. cal procedures applied to this model are detailed. Calcula-

The assignment of the temporal decays observed in cdions are presented in Sec. lll, and conclusions drawn from
herent multiple-pulse infrared spectroscopy to specific mothese results are summarized in Sec. IV.
lecular motions requires the computation of the observable
for a microscopic, mechanical model. The challenges posel. SEMICLASSICAL VIBRATIONAL ECHOES

by large-scale time-dependent quantum mechanical calcula-  gypansion of the classical mechanical electric polariza-

. . 26
tions mopvatezg the development of classicaf ant_j tion to third order in the electric field amplitudg(t) defines
semiclassical ~*°approaches to the observables of nonlineakne third-order optical response functinRC)(ts,t,,t,)

spectroscopy. We have reported a semiclassical form%ﬂismaccording to

for the generahth-order optical response functid®™ that

is based on the Herman—Kluk apprgximgﬁ%‘r?“ to the P(S)(t)=fmdtsfmdtzjmdth(e')(ts,tz,tl)

quantum mechanical propagator. Within this approd®), 0 0 0

is expressed as the average of a quantity that is computed

from n pairs of classical trajectories with associated stability XE(I-ta)B(t— -ty B(t—ti =t~ t), (D)
matrices, interrupted by— 1 phase space jumps. The trajec-in whicht,,t,, andt; are elapsed times between successive
tory pairs approximate quantum interference effécté’and  radiation-matter interactions. The signal in a third-order mea-
the phase-space jumps represent the effects of the radiatiosurement with homodyne detection, for an optically thin
matter interaction. Calculations in the simplest case of lineasample, may be related to the square of the appropriately
responsen= 1, for a thermal ensemble of anharmonic oscil- phase-matched compon&hof P(®). The material system is
lators demonstrated that the method provides quantitativeaken to havé= degrees of freedom, one of which is coupled
agreement with quantum mechanics for that ¢dskhe lin-  to the radiation with an electric dipole interaction. The dipole
ear response calculation involves computing interference efs taken to be linear in this “active” coordinafe so that the
fects from a single pair of classical trajectories without phase@esponse function can be expressed in terms of three nested
space jumps, and while its demonstrated accuracy is suggessmmutatord' involving X and the initial density operatgr
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i\: . . (HK) semiclassical approximatiéh>* to the quantum
R®(tg,t,t1)= 7| TrRK(tg)[X,K(t2)[%,K(ty) propagator,
X[%,pIKT (1)K (1)K (t3), (2 R (D)= (27)F f dz]2()G(z.0)(. @

with K(t)=exp(~iHt/#) the propagator for a system with
HamiltonianH . The proportionality constant between the co- with
ordinate and electric dipole operators has been suppressed.
Our approximation t&R®) is based on the Herman—Kluk G(z,t)=C(zt)exdiS(zt)/%], (4)

1 .
C(z,t)= \/deti( Mgqo(Z,t) +Mo(2,1) —ihyMg(2,1) + ﬁl—yM pa(Zb) | 5)

In the propagator of Eq3), z denotes a point in R-dimensional phase spact) represents the phase space point resulting
from propagation ot for time t, and|z) is the coherent state with coordinate-space wave function,

Fl4 .
(rlz)= %) exp(—%(r—q)%%p-(r—q) : )

The spatial width parameter characterizing the coherent state is depaiedp andq are theF-dimensional momenta and
coordinates associated with that state. The classical ag@tamilton’s principal functionis denotedS(z,t) in Eq. (4). The
complex-valued prefactor of the HK propagat@{z,t), is expressed in terms of stability matrices in Ef). These are
F-dimensional matrices, with elements given by, for example,

904(t)

) , @
PO 15 011, a1

[qu(znt)]aﬁz(

with «, B, andv labeling degrees of freedom, amek (q(0),p(0)). The active degree of freedom will be labeleaé- 0.
Substitution of the propagator in E@) into Eqg.(2) yields then= 3 case of the semiclassiaath-order response function
presented in Eq(14) of Ref. 29,

RG)(tg,ty,ty)=Fi 2 dz, a2 [ 9% G(z1,t1)G* (2,,t;)
312,41 (27Tﬁ)F (27Tﬁ)F (2’7Tﬁ)F 141 2141

X G(23,15)G* (24,1) G(Z5,t3) G* (Z6,t3)(Z6(t3) | Z5(t3) ) M(Zs(t3) , Z5(13) ) Za(t2) | Z6)
X(z5|23(t2) )[ X(Z5,Z35(t2)) — X* (Zg,24(t2)) [ Za(t1) | Z4){Z3| 4 (t1))

Jd Z4|p|z
X[X(Z3,Zl(t1))—X*(Z4,22(t1))]<21|22>E(%), 8
with
(glXlzy _ Apj
X(Zjazk)=<zj|—zk>_ij_lmv 9
(Agp)?  (App)? i
(zj|zk)=ex;{—y jjk - 4;1;7 +gpjk'AqJ'k , (10
AXjkEXj_Xk; ijE(X]‘"‘Xk)/Z, (11)
Axj=(X))o= (X)os  Xjk=[(X))o+ (X)ol/2. (12)

In Egs.(11) and(12), x denotes either coordinate or momentum.

The signal in a two-pulse vibrational echo measurement in the limit of impulsive excitation, in which nuclear dynamics
have time scales long compared to laser pulse durations, can be calculated from the response fundtierOWitSetting
t,=0 in Eqg. (8) permits the integrations over the phase space pagtand z, to be performed exactly, using the
completenedd of coherent states,
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dz dz dz dz
R(3)(t3,0,t1)=ﬁ_2J (ZWle)FJ(ZWﬁZ)F J(Zﬂ'ﬁs)':j(ZW;)FG(Zl’tl)G*(ZZ’tl)
X G(25,t3) G* (Z5,13)(Z6(13) | Z5(t3) ) X(Z6(t3) . Z5(t3) ) Zo(t1)[ Z6)( 25| Z1 (t1))

s
XA s 23(1)) — X (26, 2,(12)) )P+ 7‘1}<21|22>T(<2|1’|)Z>2>)'

13
P 13

The expression in Eq13) follows from a single approxima- We write the complex-valued integrand in E¢E3) and(14)
tion: the HK semiclassical propagator in E8). Evaluation in terms of its absolute valug and phaseb,

of R® in Eq. (13) requires the density matrix in the coherent

states representation. In the numerical calculations presented

below, we treat the density matrix within the high- s :f f J' f
temperature approximatidhdiscussed in Ref. 29, RE(ts01)= | dz, | dz, | dzs | dzg

(21|p]22) XI(24,25,25,Z5:t1,t3)
(27rﬁ)‘F—<;l|22§‘ch|(?12), (14) xexdi®(z,,2,,25,26:t1,t3) ], (15)

with the classical mechanical phase space distribution de-
notedf, . This approximation was shown to work well even J= W'C(Zl’tl)c* (z5,t1)C(z5,t3)C* (z4,t3)
at relatively low temperature for a semiclassical calculation mm

of the linear response functidi. X (Z6(t3)|25(t3)) X(zg(t3),Z5(t3) ) Zo(t1) | 26)
For a system of degrees of freedom, the third-order y 4
response function is related in E4.3) to an & -dimensional X (25| z1 (L) W[ X(z5,21(11)) — X* (26, 2(11)) "+ v}

integral. Calculating the integrand in E4.3) for each choice
of the timest; andt; requires computing two classical tra-
jectories of duratiort; originating atz; andz, and two tra-
jectories of duratiorts originating atzs andzg. The initial  Use ofJ as a sampling distribution requires its normaliza-

conditions for the second pair of trajectorizsand zs are  tion, with the associated definition of a weight function
constrained to be close in phase space to the concludingy(t, t5),

phase-space points of the first pair of trajectodgd,) and
z,(t;) by the coherent-state overlap facto(g,(t,)|zs)
X(zs|z4(t1)), whose form is given in Eq(10). Performing
the integration in Eq(13) presents difficulties that also arise W(tl’t3):f dzlf dsz szf d263(21,25,25,26:11, L)
in the computation of a variety of dynamical properties with (17)
semiclassical propagatoi$26~*®Though the integral is real-
valued and finite, the integrand is complex-valued and diver- o )
gent in time. This temporal divergence arises from thelN€ response function is then expressed in terms of a nor-
growth with time of the HK prefactorsC(z,t) in Eq. (5, Malized sampling  distribution P(z;,2;,25,76:1;,13)
contained withinG(z,t) in Eq. (13), each of which diverges =9(Z1:22,25,26;11,t5)/W(t3,t5),
as the square root of time for the integrable model of the
following section, and exponentially in the more general cas%@
of chaotic dynamics. Complex-valued divergent contribu-
tions to the integral of varying phase interfere to cancel the
divergences and to approximate the oscillations characteriz- :W(tlltS)J' dzlf dzzf d25f dzgPexdi®]. (18
ing quantum dynamics. An unbiased Monte Carlo evaluation
is inappropriate for such an integral, and choice of an impor-
tance sampling procedure is a critical aspect of the calculaApplication of the Metropolis algorith produces
tion.

In the following section, we calculate the nonlinear re-
sponse function for an ensemble of noninteracting one- W(ty,t3) .
dimensional anharmonic oscillator§=1, by applying the R(t,0t1)~ N 2;‘ exiP(Zy)] (19
“phase distribution” strategy proposed by Sun and Mfifer
to evaluate semiclassical approximations to correlation func-
tions. In this procedure, the absolute magnitude of theA set of values of{z;,z,,z5,z5} is denotedZg, with the
complex-valued integrand is used as an unnormalized sanirdex s labeling theN steps in a Metropolis random walk
pling distribution in a Metropolis Monte Carlo integration. throughZ space. According to the Metropolis procedure, the

X(21]22)P1of ci(Z12) . (16)

)(t3,011)
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point Zg,, is included with unit probability ifJ(Z,4) J=CXOf (1), (22

>J(Zs) and with probabilityJ(Zs,1)/J(Zs) otherwise. This

sampling procedure has the advantage that the temporally -_ éB 5|C(21,11)C* (25,t1) C(2s,13) C* (2, t3)]|

divergent contributions to the integrand are included in the 87 mh

sampling function, so that the integral is expressed in Eq. (23

\(l;?zjeas a sum of complex-valued terms of unit absolute  x—| x(zy(t,),zs5(t3)){[ Xz, 24(t1)) — X* (26, 25(t1)) ]
Unlike the integrand in Eq(15), the integrand in Eq. +y 1P, (24)

(17) is positive definite. Nevertheless, the integral required to _

computeW in Eq. (17) is itself a candidate for evaluation by O=[{ze(ta) | z5(ta) (22t 26)(z5l a(t) 2l Z2)] - (29)

a Monte Carlo method with importance sampling. OneFor the Morse oscillator model described below, we have

choice for an unnormalized sampling distribution for this observed that for relatively small values gf andts, J is

integral is dominated by the factor

Jo(21,22,25,26311) = [(Z2(t1) | Z6)( 25| 22 (1)) ‘Jl(zlazZvZszﬁ;tlvt3):O(Zl122125126;t11t3)fcl(?12)(-26)
X(21| )| f1(Z12).- (20 . o .
The unnormalized sampling distributidn differs fromJg in

This distribution emphasizes regions of the integration spacggq. (20) in the inclusion of the absolute value of an overlap
with the following properties. The second set of phase-spacgctor for the final coherent statelgzs(t3)|zs(t3))], which
points,zs andzs, are “close” in the sense described above to constrains the endpoints of the second trajectory pair to be
the ConCIUding phase-space pOintS of the initial pair of tra'c|ose in phase space. On the time scale of the energy-
jectories,z;(t;) andz,(t,), z; andz, are close in this sense, dependent period of the anharmonic oscillator, the faxtor
and initial mean momenta and coordinates, are associ- hecomes significant. This factor is a quartic function of the
ated with Iarge values of a Boltzmann distribution. This Sam-averages and differences of pOSitiOﬂS and momenta of vari-
pling distribution also has the advantage that it can be noroys trajectory pairs, and its value can span several orders of

malized analytically, magnitude. It is necessary to assign correct statistical weights
to sets of trajectories for which this factor is large. However,
Wozf dzlf dzzf dz5f dz5Jo(21,25,25,26;t1) because the coordinates and momenta of the oscillator are
bounded for a given energy, at long timés dominated by
=(47h)°%F. (21)  Cin Eq. (23), which increases without bound for increasing
t; andts.

For the model treated in the following section, we have de- . . .
Because of the approximate separation of time scales

termmed_ e_mplrlcally that the_ integral n EqL7) may be associated with the different factors dnthat are shown in
more efficiently sampled using a multistep procedure de-

scribed below, than by using the distribution in EG0). Eq. (22), we adopt a procedure that treats these factors sepa-

Calculations ofW from Eg. (17) using the unnormalized ra“?'y- The calcu-lat|on O.W in Eq. (17) is Caff'ed.o‘“ as a
. o : . s series of nested integrations, such that contributioristtat
sampling distributionJ, yield an answer that is noisier and

) e important at ever later time scales are successively incor-
that appears to converge towards a different result compare

. . . . é)orated at each stage. We begin by using the analytically
to a calculation with the same number of sampling point normalizable sampling distributiady, in Eq. (20) to evaluate
using the multistep method described below. As shown in th Ping 4

following section,R® calculated usingV evaluated by the The integral o, in Eq. (26)

multistep procedure generally agrees with exact quanturidVy(t;,ts)

mechanics. UsingV sampled according td, produces an

R(s) result that is sy_stematically too I_argg. The less than op- :f dzlf dzzf dzsf dzed1(21.22,25,25:t1.t3), (27)

timal sampling provided by the distributial, suggests the

use of an alternative distribution that depends on the end-

points of the second pair of trajectorieg(t;) and zg(ts). =W0f dzlf dzzf dz5f dzg

An analogy may be drawn to the simulation of rare events,

where sampling procedures must emphasize trajectories X Po(21,2,25,25:t1) [{Z6(t3) | Z5(t3))]- (28

staruhng N an |r]:|t|al f'or rgactant state that e'ventuicllly I,,'I' he integral in Eq.(28) is evaluated by a Monte Carlo

rea}‘c a regllon o 4(;912 iguration space representing a “fina method with sampling distributioRe=Jo /Wo,

or “product” state.™
A more efficient sampling procedure for the integral in Po(21,25,25,26;t1)

Eq. (17) may be devised by identifying factors in the inte-

gr_andJ that are significant on different time ;cales. We write :(477h)‘3':exp< - %(AqéalJr AqéulJf A(ﬁz))

J in Eq. (16) in terms of a factolC that contains the tempo-

rally diverging HK prefactors, a factoX that contains 1

coherent-state matrix elements of the coordinate operator, a ><exp< - W(ApézlJrApéhlJrApfz))fc|(?12),

factor © containing overlaps of coherent states, dpd the Y

classical phase space distribution, (29
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Az =z;— z(t). (30 The density matrix has the canonical forps= exp(—,8I3|)/
Tr{exp(- BH)}. Calculations with the HK propagator require
specifying a value for the coherent-states width paramgter
in Eq. (6). For the calculations presented hesewas as-
signed a value close to that appropriate to a harmonic oscil-
lator, y~ JVmw/#. Here,w is the harmonic frequency of the

Morse oscillator, given by

The distributionP, is expressed here in terms of the mean
and difference variables of the initial conditions for the first
pair of trajectoriesz;, and Az;, and in terms of difference
variables connecting the endpoints of the first pair of trajec
tories to the initial conditions of the second trajectory pair
Azgx, and Azsy . The distribution is Gaussian in all vari-
ables except the mean initial coordinatg. While the form >D
of Py is independent of,, generating the value of the dis- w=a \/—
tribution for a given set ofz,,z,,z5,z} requires calculation m
of two trajectories of duration;. These trajectories deter-
mine z,(t,) andz,(t;), which, for givenAzGZ1 and Az5nl,

(36)

In the linear-response calculations of Ref. 29, we explored
the effects of varying the magnitude ¢f and demonstrated
specify the values o5 andzg. that accuracy and convergence are optinfi2éat values in
The weight functiorW; is required in the normalization  thjs range. Time-dependent phase-space coordinates, stability
of a sampling distributiord,, which incorporateX in Eq.  matrices, and Hamilton’s principal function were computed
(24), without numerical integration, using the analytical formula-
I5(24,22,25.,26 1 ,ts) tion of dynamics of the Morse oscillator in terms of action-
e angle variabled®*"*8The existence of an analytical solution
=31(21,25,25,25 11 ,t3) X(21, 25,25, 25t 1, t3), (31)  for the Morse oscillator dynamics allows these quantities to
be calculated at a given set of time variables, without com-
puting their values over a range of earlier times. However,
coarse-grained trajectories were computed to ensure the cor-
=J leJ deJ’ dz5J dzg(21.25.25,26:t1,t3), (32 rect choice of branch in the complex square root involved in
the HK prefactors in Eq(5).
The integration in Eq(28) was performed by a Monte
:Wl(tl*tfﬂ)f dzlj dzZJ dz5f dzg Carlo procedure using the nearly Gaussian sampling distri-
bution P, in Eq. (29). For each set of time values, 18ets of
XP1(21.25,25.26:t1,t3) X(21,22.25.Z65t1,t3). (33)  four time-propagations sufficed to attain convergence. The
The normalization factow, in Eq. (33) is evaluated by the Integrations in Eqs(33), (34), and (18) were performed by
Metropolis method with sampling distributioR, =J, /W . Metropolis Monte Carlo. Metropolis moves in the eight vari-
In each step of the Metropolis random walk, the quantities??!€S{Z12,AZ12,AZx,AZsy,} were chosen from truncated
Z10, Azp0, AZGZM' andAZ5111 are varied. A final application uniform distributions symmetric ab_out zero. The integrations
of this procedure yield¥(t, ts) in Eq. (17), producingW, and W converged with 10-1C° sets of four
time-propagations, and showed a robust indepge)ndence on
Metropolis step size. The integrations produciRg’ con-
W(tl’t3):W2(t1't3)f dzlf dz?f d25f dzs verged more slowly and with a greater sensitivity to step
_ size. The calculations d®® also employed 10-10° sets of
X Pa(21,25,25.,26;11,13)C. (34 four time propagations. Monte Carlo steps could be rejected
This integra| is Computed with Samp"ng d|str|but|d?|2 either thrOUgh the MetrOpO”S criterion or if they prOdUCEd a
=J,/W,. Our calculation oR®)(t5,0t,) at fixed values of dissociative trajectory. Dissociative trajectories are generated
t, andt, thus requires four nested Monte Carlo integrationsboth from the high-energy tail of the Boltzmann distribution
The integral in Eq(28) yieldsW; , which is used to calculate in Eg. (29), and from the phase-space jumps, whose distri-
W, in Eq. (33), which in turn is required to compute/ in ~ butions are independent of temperature. All such trajectories
Eq. (34), which is then applied to evaluaR® in Eq.(18).  were discarded from the calculation, in principle jeopardiz-
This calculation is particu|ar|y numerica”y demanding, be_ing the detailed-balance condition inherent in the Metropolis
cause the sampling distributions in each of these integrals a@gorithm. We observed that both the fraction of Monte Carlo
time dependent. Evaluation of the magnitude of the samplingnoves rejected by the Metropolis criteriép; and the frac-
distribution for a particular set of initial conditions tion of dissociative trajectoriefy;ss increased with increas-
2,,2,,25,Zs requires computation of a pair of trajectories of ing time. For the parametesfio=2 and fD=25.6, em-
durationt; in the case of, in Eq. (28), and requires com- Ployed below in Fig. 5,f4;ss increased to 0.13 andl,e;
putation of an additional trajectory pair of duratit)j]in the increased from 0.32 to 0.88 during the time ranges studied.
cases ofP; in Eq. (33 andP, in Eq. (34). For Bhw=4 andBD =25.6, the parameters of Fig. 6 below,
We apply this procedure in the following section to com- faiss increased from 0.05 to 0.35, arfe,; increased from
pute R®)(t5,0t,) for a thermal ensemble of noninteracting 0-30 to 0.87. For the parameters used in Fig. 8 beJ@fuy
Morse oscillator€® each with Hamiltonian =5 andBD=63.9, fyss increased from 0.01 to 0.09, and
fej increased from 0.32 to 0.85. This integration procedure
has the advantage that the calculatiorRS?) is fully paral-
lelizable in the sense that the computations at each set of

Wo(ty,t3)

f)Z
A:— — 7a6|2
H > +D(1—e 992, (39
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600 intensities in the echo signal for an anharmonic oscillator in
i the absence of dissipation is shown in Fig. 1 to be more
400 complex than that predicted by simpler models of a two-level
i systenr?
200 The response function probed in an echo experiment
5; I may be divided into “rephasing” terms with the potential to
£ 0 generate an echo peaked neéget,, and “nonrephasing”
. I terms, with the capacity to produce an echo at
-200 ty~ —t,.2224151A pegative value of; corresponds to inter-
I changing the order in time of the two applied pul$és#!:5!
-400 | For the Morse oscillatolR®)(t5,0t;) is nearly periodic both
I . 1 i ‘ . in t; and inty, with approximate period=27/A, where
-6005 100 200 300 A=hw?/2D is the anharmonic frequency decrement be-

Y tween successive one-quantum transitions. For ftxedhe
FIG. 1. The third-order response functiGﬁS)(tg,O,tl) is calculated from response function therefore' can show a series of echoes at
quantum mechanics fg8%w=0.5 and8D =25.6. The delay time is varied t3~t1+ N7 and another series of echoestat—t;+nr,
from t,=75 (solid curve to t,=100 (dotted curve to t,=150 (dashed  Wwith n an integer. Figure 1 shows the rangeQ=< 7, with
curve. 7~320. For each, value shown in Fig. 1, the pattern shown

repeats nearly periodically over intervals of duratiorrhe

_ _ . appearance dR® on the interval 8<t;<r depends on the
time values are performed independently. These Sem'dassrhagnitude oft, relative both tor and to 7/2. Fort,< /2,

i (3) i i - e . .
cal calcula'?ons ofR g $t3}0't1) zre compfu]:[anodnally mterr]] there are two significant echoes, unequal in intensity, peaked
sive, even for a model of one degree of freedom. Each nuziy ¢ and atty~r—t,. The earlier echo arises from the

merical calculation oR® presented in the following section “rephasing” contribution toR®), while the later echo is a
employed approximately 700 sets of values@fs), either oo 4ic image of the “nonrephasing” contribution peaked at
~700 values Of_t3 for calculatlon.s W'th_f'xedl or N?OO ty=—1,. This is the situation depicted by the solid and dot-
vaéues of both times for calculations with=ts. Atypical o4 cyrves in Fig. 1. Fot;~7/2, these two echoes merge
R(.) calculation required approximately 60 processor .day%to a single peak at;~t;~7/2. This is approximately the
using AMD Athlon MP200G- processors. This time in- gy ation shown by the dashed curve, for whigk 150 and
clud_es the calculation aiV; in Eq.(28) (~1 processor dy _»_160 Forr/2<t;<r, echoes occur ak~t, andts~r
W, in Eq. (33 (~10 processor daysand W n Eq.§)3_4) —t4, but with the “nonrephasing” peak earlier than the
(~25 processor daysas well as the computation &% in “rephasing” one. Att,~r, the amplitude of the response

Eq. (18) (~25 processor days function is greatly diminished with peaks t§~0 andt,
~ 7. These last strongly quantum mechanical cases are not
IIl. NUMERICAL RESULTS illustrated in Fig. 1. Sincer=# "1, in the limit of classical

We next present and compare quantum mechanical, Clagqfe_c_r;amcsért;oc, t?e {Z)GI’IOE (;fﬂ:he“ echo shlgn_al ,t,)eC(;mfes
sical mechanical, and semiclassical calculations of the thirg'"NIte, and the earliest peak ot the nonrephasing: €cho for

order response functionR®)(t5,0,), for a thermal en- positiveta‘ moves towards infinité;. The remaining classi-
semble of noninteracting Morse oscillators. QuantumCal echo is peaked aﬁ%tl.‘ . .
mechanical calculations &)(t5,0¢,) are shown in Fig. 1 (3)Quantum and clgssmal mechanical calculat|0n§ of
as a function ot for fixed t;. For the Morse oscillator, the R (t;,01;) as a function oft; att,=75 are compar.ed n
response function in Eq2) has the form of the product of a Fig. 2 The solid curve shows the result of a classical me-
dimensional factori?wD) ~* and a dimensionless function chanlc_al _calculatlon,lg Sfmp”ted fopD=25.6 from the

of wt; and wt3 depending on two additional parameters: theﬁ—>0 limit of Eq. (2).™

classical mechanical quantigD and the quantum mechani- B

cal quantityBhw. Figure 1 and all subsequent figures showR®)(t3,01t1)=— —| ([Mqp(Zt3) Jod M pp(Z —t1) o)

the dependence of the dimensionleséwDR®) on time m

variables scaled bw. In Fig. 1, 8D=25.6 andBfiw=0.5. B

The quanturR® is calculated by evaluating E¢Q) in the — - {[Mqp(z,t3) JooP(—t1)P(0)) | (37)
energy representatidhand restricting all sums to bound

states. In the limit of impulsive excitatioi, corresponds to Here, p(t) denotes the momentum of the active degree of
the delay time between excitation pulses &g the detec- freedom, and the angular brackets indicate a thermal average
tion time, typically integrated over in a measurement. Theover the canonical phase space distribution. The stability ma-
delay time is varied in Fig. 1 frorty =75 in the solid curve trices in Eq.(37) are defined in Eq(7). Trajectories and

to t;=100 in the dotted curve td;=150 in the dashed stability matrices required in Eq37) were calculated using
curve. For a system characterized by static line broadeninghe analytical dynamics of the classical Morse oscillator in
the peak of the echo signal is expected to occugat,.***°  terms of action-angle variablé$!"*®as described in the pre-
In the present model, the thermal distribution of oscillatorceding section. The contribution to the observable from dis-
energies produces static line broadening, but the pattern @bciative trajectories is neglect&dThe dashed curve in Fig.
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FIG. 4. The vibrational echo response functiBa(t) is shown for 8D
=25.6. The solid curve is the classical mechanical response, and the dashed
urve shows the quantum mechanical result@érw=2.0.

FIG. 2. The third-order response functid¥®)(t;,0t;) is shown fort,
=75 with BD=25.6. The solid curve shows the classical mechanical resul®
from Eg.(37), and the dashed curve shows the quantum result froniZtqg.
with Bhw=2.0.

twice the harmonic frequenay, and a linear drift associated

with the linear divergence of stability matrix elements for a

2 shows the corresponding quantum mechanical result, als(g) . . : : _53
. ne-dimensional anharmonic oscillatér>® The dashed
for BD=25.6 and withB%w=2.0, computed from Eq2).

The approximate period of the quantum response function igurve in Fig. 4 shows the guantum mechania(t), also
. D=25.6 and withBhw=2.0, th t di
7~160, so that,= 75~ 7/2 and the quantum echo displays a or B and with5h w © parameters used in

indl K on the int [ot.< 7. Classical and ¢ Figs. 2 and 3. Like the classic&g(t), the quantum me-
single peak on the intervardl= 7. Llassical and quantum - ., ahical result oscillates at a frequency near But with a
echoes are each peakedtg~t; and have similar magni-

. o . frequency shift relative to the classical result that is evident
tudes. The rapid oscillation in the quantum case is characte

: . f Fig. 4 at longer times. At short times, classical and quan-
ized by a lower frequency than the classical result.

The quantum calculation in Fig. 2 is reproduced as thetum results agree well, but the envelope of the quantum re-
- o T 5ponse function shows a peak n /2~80 that is absent
dashed curve in Fig. 3. The solid curve in Fig. 3 shows th b P ear T

. . : 8n classical mechanics.
semiclassical calculation from Ed15), also for t;=75,

B - . ) The quantunRg(t) from Fig. 4 is repeated in Fig. 5 as
BD_”25',[6’ and,Bhwt— Ztﬂ Thetsem|cIaShS|cr?1l rets)ulth sh.i)r\:vs the dashed curve. The solid curve in Fig. 5 shows the semi-
excelient agreement with quantum mechanics, both With 1€z, qjcal approximation t&Rg, computed from Eq.(15).
spect to amplitude and frequency.

. ; . While the semiclassical approximation slightly overestimates
Since the echo response is peakethatt, in both clas- th PP gntly

ical and N hani der the d q fe amplitude, it reproduces the recurrence~at/2 and fre-
sicaland gquantum mechanics, we consider the depen ence(ﬁ)uenc:y shift that distinguish the quantum from the classical

Fhe response function near this pea_lk on delay time by deﬁr}'esponse functions. We next consider the dependence of
T%(g)theo ecgol rles_ponseR functlorRﬁ(t) _byF_ REAEtf) Re(t) on Bhe at fixed BD. Since the classical mechanical
:D—Z(g 6’t)'ll'h acul_ztlons 0 E(t) art(:\ N ?Wn.m | '9. h O Jimit is attained forBhw—0 at fixedBD, increasing8fiw at
pD=25.6. The solid curve shows € classical mec anlca4ixed BD increases the potential importance of quantum ef-
result computed from Eq37). The classicaRe(1) in Fig. 4 fects. The dashed curve in Fig. 6 shows the quantum me-

shows an oscillation at a frequency approximately equal t%hanicaIRE for BD=25.6 andBh w=4.0, twice the value of

150 T T T T

100+ 80 n

RV(75,01)

L | L | s ]
0 50 . 100 150 0 20 0w 80 100
3

| L | L I L i

FIG. 3. The dashed curve repeats the quan®{®(t;,0t,) from Fig. 2 for FIG. 5. The vibrational echo response functiBa(t) is shown for 3D
t,=75 with D =25.6 andBf w=2.0, and the solid curve shows the semi- =25.6 andB%w=2.0. The dashed curve shows the quantum result from
classical result from Eq15). Fig. 4, and the solid curve is the semiclassical calculation from(Es).
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FIG. 6. The vibrational echo response functiBa(t) is shown for 8D FIG. 8. Quantum(dashed curveand semiclassicalsolid curve echo re-
=25.6 andBhw=4.0. The dashed curve shows the quantum mechanicafPonse functions are shown D =63.9, fhw=5.0, a temperature re-
result, and the solid curve displays the semiclassical calculation from Egduced from that in Fig. 5 by a factor of 2.5.

(15).

mains surprisingly accurate at the very low temperature of

Bho as in Fig. 4. The solid curve shows the semiclassicakig g despite the use of a high-temperature approximation
approximation for3D = 25.6 andBh w=4.0, computed from {5 the density matrix in Eq(14).

Eq. (15). The accuracy of the semiclassical result degrades,
not surprisingly, asBiw increases. Nevertheless, the semi-
classical approximation remains qualitatively correct, repro—'V- CONCLUSIONS
ducing the two dominant frequencies of the quantum result,  our previous calculatiod of the linear response func-
and even displaying some of the fine structure in the peakon, R(*)(t), for the model of Eq(35) demonstrated that a
amplitudes. semiclassical approximation based on the Herman—Kluk
Figures 7 and 8 show the effect &g(t) of temperature (HK) propagator of Eq(3) and the high-temperature ap-
variation. The quantunidashegl and classical mechanical proximation to the density matrix in Eq14) is quantita-
(solid) echo response functions are shown in Fig. 7 at a temyjyely correct over a wide range of temperature. Figures 3, 5,
perature reduced by a factor of 2.5 compared to the casgs and 8 of the present work demonstrate that this pair of
shown in Fig. 43D =63.9 andBfiw=>5.0. The classicaRe  approximations provides an excellent approximation to the
shows the same oscillations and linear drift displayed in Figquantum mechanicahonlinear response function for the
4, but the amplitude of the oscillations has increased withsame model. For a thermal distribution of noninteracting an-
decreasing temperature. In the quantum mechanical case, th&rmonic oscillators, the quantum echo response function
amplitude of oscillations approaching the first recurrence ingjitfers from the classical mechanical limit in exhibiting re-
creases more gradually than at higher temperature. The quaggrrences and in the existence of a quantum mechanical fre-
tum result from Fig. 7 is reproduced as the dashed curve iﬂuency shift. Both of these effects are reproduced by the
Fig. 8, while the semiclassical approximation from Et5)  semiclassical calculations. These results for a model with a
is shown by the solid curve. While the semiclassical resulingle degree of freedom represent a rigorous test of the
overestimates amplitudes somewhat more than at the highgemiclassical approach. In a larger system with dissipation,
temperature of Fig. 5, the semiclassical approximation regffectively irreversible dephasing processes can obscure the
differences between classical and quantum calculatiotfs.

The success of the HK propagator for the vibrational echo

80
l ' calculations reported here suggests that this semiclassical
Ch bi ;‘, :“ }': method may be usefully applied to the many measurements
40t NER R in nonlinear vibrational spectroscopy that probe such re-
CopgdrBERRR R sponse functiond!
YT b o “”E:::'II"IH:'”':H“II'IH: Our findings that the third-order response function rel-
Ry 0 T e E':”:'E‘E'I{}IH':}”:.'II}“‘,J evant to the vibrational echo can be modeled with the HK
v |l "|;:l|: lf‘: ,I| i E ;””” }If::' ik propagator are consistent with the growing literattifé:3*
a0k “Wh i ALt ! i /bt }J} "3 on t.he successful apphcatlop of this sgmlclassmal approxi-
A b SRR mation to a variety of dynamical properties. However, previ-
ey ‘ ous applications of this propagator to dynamical observables
80 ‘ L . have emphasizetivo-time correlation function&43°° An
0 20 40 60 80 100

FIG. 7. The vibrational echo response functiRg(t) is shown within clas-
sical mechanics at a temperature reduced by a factor of 2.5 compared to Fi
4, BD=63.9, by the solid curve. The quantum result 8D =63.9, Bfw

=5.0 is shown by the dashed curve.

exception is the study of the three-time correlation function
related to resonance Raman scattering by Ovchinnikov

gt al?® which employed HK dynamics to treat nuclear mo-
|

ons on ground and excited state electronic surfaces. The
different physics of this vibronic observable dictated a dif-
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