PCA - Photoconductive Antenna for
terahertz waves
Del Mar Photonics - PCA brochure - buy online - PCA Q&A |
||||||||||||||||||||||||||||||||||||||
Geometrical antenna parameters:
|
||||||||||||||||||||||||||||||||||||||
PCA with LT-GaAs absorber for laser excitation wavelengths l £ 850 nm; optical absorption > 70% | ||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||
buy online | ||||||||||||||||||||||||||||||||||||||
> | PCA with LT-InGaAs layer for laser excitation wavelength l = 990 .. 1060 nm; optical absorption ~ 50% | |||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||
buy online | ||||||||||||||||||||||||||||||||||||||
> | PCA with LT-InGaAs layer for laser excitation wavelength l ~ 1040 nm; optical resonant design with 97 % absorption @ 1040 nm | |||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||
buy online |
||||||||||||||||||||||||||||||||||||||
|
Del Mar Photonics - PCA brochure - buy online
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
Del Mar Photonics - PCA brochure - buy online - PCA Q&A
PCA - Photoconductive Antenna
for THz Applications
|
|||||||
> | Contents | ||||||
> | How does a PCA work? | ||||||
A photoconductive antenna (PCA) for terahertz (THz) waves
consists of a highly resistive direct semiconductor thin film with two
electric contact pads. The film is made in most cases using a III-V compound
semiconductor like GaAs. It is epitaxially grown on a semi-insulating GaAs
substrate (SI-GaAs), which is also a highly resistive material. |
|||||||
A short laser puls with puls width < 1 ps is focused between the electric contacts of the PCA. The photons of the laser pulse have a photon energy E = h× n larger than the energy gap Eg and are absorbed in the film. Each absorbed photon creates a free electron in the conduction band and a hole in the valence band of the film and makes them for a short time electrical conducting until the carriers are recombined. The PCA can be used as THz transmitter as well as THz receiver.
|
|||||||
To get the needed short carrier lifetime, the film must
include crystal defects. These defects can be created by ion implantation
after the film growth or alternatively by a low temperature growth. Low
temperature grown GaAs (LT-GaAs) between 200 and 400 °C contains excess
arsenic clusters. |
|||||||
> | PCA applications | ||||||
As mentioned above, a PCA can be used as a THz emitter or
detector in pulse laser gated broadband THz measurement systems for
time-domain spectroscopy. |
|||||||
Security checks:
|
|||||||
Medical imaging for brest and
skin cancer detection and for teeth testing in dentistry. Terahertz waves
offers medical benefits:
|
|||||||
Process control for:
|
|||||||
> | Frequency and wavelength | ||||||
The photoconductive antenna can be considered as a dipole
of the length L, which is in resonance with the electromagnetic wavelength
ln inside the semiconductor. |
|||||||
The refractive index n of GaAs at terahertz frequencies is n = 3.4. With this value the first resonant frequency and wavelength of the antenna with the length L can be calculated as follows: | |||||||
f (THz) | l (µm) | L (µm) | |||||
0.3 | 1000 | 147 | |||||
0.5 | 600 | 88 | |||||
1.0 | 300 | 44 | |||||
1.5 | 200 | 29.4 | |||||
3.0 | 100 | 14.7 | |||||
> | Substrate lens for PCA transmitter | ||||||
PCA without substrate lens | |||||||
Because of the high refractive index n ~ 3.4 of the semiconductor PCA the outgoing terahertz waves are strongly diffracted at the substrate-air interface. The boundary angle a for the total reflection can be calculated with a = arcsin(n-1) ~ 17.1 ° |
|||||||
can escape the substrate. For GaAs with n = 3.4 the escape solid angle is W = 0.28. This is only 4.4% of the forward directed intensity. |
|||||||
Aplanatic hyperhemispherical lens | |||||||
To increase the escape cone angle a , a hemispherical lens with the same refractive index n as the PCA can be used. To decrease the divergence in air, a hyperhemispherical lens with a certain distance d from the emitter to the tip of the lens is common. If this distance d is |
|||||||
the hyperhemispherical lens is aplanatic, that means
without spherical and coma aberration. For a silicon lens with almost the
same refractive index n ~ 3.4 as GaAs at therahertz frequencies the distance
is d = 1.29 r with the lens radius r. The height h of the aplanatic
hyperhemispherical lens is therefore h = d - t with the thickness t of the
semiconductor PCA. |
|||||||
L = r (n+1) |
|||||||
For silicon is L = 4.4 r. With this hyperhemispherical lens nearly all the forward directed terahertz intensity can escape the PCA. The problem left is the beam divergence, which requires a further focussing element like a lens or mirror. | |||||||
Del Mar Photonics - PCA brochure - PCA models - PCA Questions and Answers - buy online
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||||||||
|