Del Mar Photonics  - Reserve a spot in our CW lasers training workshop during this summer in San Diego, California

Del Mar Photonics featured customer: Christophe Couteau,  Photonic Entanglement Group (PEG) of Prof Gregor Weihs, Institute for Quantum Computing (IQC).
The IQC is part of the University of Waterloo in Ontario, Canada.
 


Pictures taken during installation are coming soon!

Computer-controlled high resolution SPECTROMETER OB' based on broadly tunable CW laser, model LaserScan TIS-FD-08/A
 

 

Request a quote for LaserScan - LaserScan

Publications
Towards a high efficiency electrically-injected source of single photons for quantum cryptography.
S. Olivier, L. Grenouillet, S. Moehl, K. Kheng, J.M. Gйrard, C. Couteau, J.P. Poizat, and A. Lemaоtre.
Submitted to ECIO 2005.
Geometric Phase of Dicke States of Excitons in N coupled Quantum Dots.
D.M. Tong, L.C. Kwek, C. Couteau, and C.H. Oh.
Mod. Phys. Lett. B 18(28-29)1433.
Correlated Photon Emission from a II-VI Quantum Dot.
C. Couteau, S. Moehl, F. Tinjod, J.M. Gйrard, K. Kheng, H. Mariette, J.A. Gaj, R. Romestain, and J.P. Poizat.
Appl. Phys. Lett. 85 (25) 6251.
Spin relaxation dynamics in single Quantum Dot.
I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, C. Couteau, J.P. Poizat, and J.M. Gйrard.
Accepted to Phys. Rev. B .
Photon Correlations and Cross-Correlations from a Single CdTe/ZnTe Quantum Dot.
C. Couteau, S. Moehl, J. Suffczynski, J.A. Gaj, F. Tinjod, J.M. Gйrard, K. Kheng, H. Mariette, R. Romestain and J.P. Poizat.
Acta Physica Polonica A 106 (2) 169.
Boоtes Quantiques II-VI comme sources de photons uniques.
C. Couteau, S. Moehl, F. Tinjod, J. Suffczynski, R. Romestain, J.C. Vial, J.M. Gйrard, K. Kheng, and J.P. Poizat.
J. Phys. IV France 119 (2004) 165.

=======

Request a quote for LaserScan - LaserScan

 * G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, All-fiber three-path Mach–Zehnder interferometer, Optics Letters 21 (4), 302–304 (1996).
* G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, Two-photon interference in optical fiber multiports, Physical Review A 54 , 893-897 (1996).
* G. Weihs, H. Weinfurter, and A. Zeilinger, Towards a long distance Bell-experiment with independent observers, in "Experimental Metaphysics" R.S. Cohen et al. (Eds.), Kluwer Academic Publishers, pp. 271 – 280, Dordrecht (1997).
* G. Weihs, T. Jennewein, H. Weinfurter, and A. Zeilinger, Acta Physica Slovaca 47 (3/4), 337-340, (1997).
* G. Weihs, T. Jennewein, C. Simon, H. Weinfurter and A. Zeilinger, Violation of Bell's inequality under strict Einstein locality conditions, Physical Review Letters 81 (21), 5039–5043 (1998).
* G. Weihs, T. Jennewein, C. Simon, H. Weinfurter and A. Zeilinger, A Bell Experiment under Strict Einstein Locality Conditions, pp. 267–269 in Epistemological and Experimental Perspectives on Quantum Physics, D. Greenberger, W. L. Reiter, and A. Zeilinger (Eds.), Kluwer Academic Publishers, Dordrecht 1999.
* P. G. Kwiat, A. G. White, I. Appelbaum, J. R. Mitchell, O. Nairz, G. Weihs, H. Weinfurter and A. Zeilinger, High-Efficiency Interaction-Free Measurements, Phys. Rev. Lett. 83 (23), 4725–4728 (1999).
* C. Simon, G. Weihs, A. Zeilinger, Quantum Cloning and Signalling, Acta Physica Slovaca 49, no. 4, 755 (1999).
* C. Simon, G. Weihs, A. Zeilinger, Optimal Quantum Cloning and the Universal-NOT without Quantum Gates , J.Mod.Opt. 47, 233–246 (2000).
* T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, Quantum Cryptography with Polarization Entangled Photons, Phys. Rev. Lett. 84 (20), 4729–4732 (2000).
* C. Simon, G. Weihs, and A. Zeilinger, Optimal Quantum Cloning via Stimulated Emission, Phys. Rev. Lett. 84 (13), 2993–2996 (2000).
* T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, A fast and compact quantum random number generator, Rev. Sci. Inst. 71 (4), 1675–1680 (2000).
* N. Gisin, W. Tittel, J. Rarity, and G. Weihs, Sources of entangled photons, in “The physics of quantum information”, D. Bouwmeester, A. Zeilinger, and A. Ekert (Eds.), Springer (2000).
* J. Kempe, C. Simon, and G. Weihs, Lambda's, V's and optimal cloning, Phys. Rev. A 62, 032302 1–8 (2000).
* F. Embacher, R. Müller, H. Stadler, G. Weihs, Paradoxien erkennen – Quantenphysik in der Schule, Praxis der Naturwissenschaften Physik, 8/49 , 15–21 (2000).
* T. Jennewein, G. Weihs, and A. Zeilinger, Schrödingers Geheimnisse – Absolut sichere Kommunikation durch Quantenkryptographie, c't 6/01, 260–269 (2001).
* Jian-Wei Pan, Matthew Daniell, Sara Gasparoni, Gregor Weihs, and Anton Zeilinger, Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation , Phys. Rev. Lett. 86, 4435 (2001).
* A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular momentum states of photons, Nature 412, 313-316 (2001).
* G. Weihs and A. Zeilinger, Photon statistics at beam-splitters: an essential tool in quantum information and teleportation, in “Coherence and Statistics of Photons and Atoms”, J. Perina (Ed.), Wiley, 2001
* W. Tittel and G. Weihs, Photonic Entanglement for Fundamental Tests and Quantum Communication, QIC, 1(2), 3–56 (2001).
* Gregor Weihs and Birgit Weihs-Dopfer, Reisen wie die Quanteninformation, .copy 03, 2.1, 28-30 (2001).
* T. Jennewein , G. Weihs, J.-W. Pan, and A. Zeilinger, Experimental Nonlocality Proof of Quantum Teleportation and Entanglement Swapping, Phys. Rev. Lett. 88, 017903 (2002).
* Gregor Weihs, Bell 's Theorem for Space-Like Separation, in Quantum [Un]speakables: From Bell to Quantum Information, R. A. Bertlmann and A. Zeilinger, Eds., pp. 155–162, Springer, Berlin 2002.
* Alipasha Vaziri, Gregor Weihs and Anton Zeilinger, Superpositions of the orbital angular momentum for applications in quantum experiments, J. Opt. B 4, S47–S51 (2002).
* Gregor Weihs, Quantenspuk ist nicht relativ, Physik Journal 1 (3), 20 (2002).
* Heng Fan, Gregor Weihs, Keiji Matsumoto, and Hiroshi Imai, Cloning of symmetric d-level photonic states in physical systems , Phys. Rev. A 66 , 024307 (2002).
* H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Condensation of Semiconductor Microcavity Exciton Polaritons, Science 298, 199–202 (2002).
* R. D. Gill, G. Weihs, A. Zeilinger, and M. Zukowski, No time loophole in Bell's theorem: The Hess-Philipp model is nonlocal, Proc. Natl. Acad. Sci. USA 99, 14632–14635 (2002).
* T. Jennewein, J.-W. Pan, S. Gasparoni, G. Weihs and A. Zeilinger, High-Fidelity Experimental Quantum Teleportation and Entanglement Swapping, in, Foundations of Quantum Mechanics in the Light of New Technology, Y. A. Ono and K. Fujikawa Eds., World Scientific, Singapore 2002.
* Alipasha Vaziri , Gregor Weihs , and Anton Zeilinger , Experimental two-photon, three-dimensional entanglement for quantum communication, Phys. Rev. Lett. 89, 240401 (2002).
* R. D. Gill, G. Weihs, A. Zeilinger and M. Zukowski, Comment on "Exclusion of time in the theorem of Bell"by K. Hess and W. Philipp, Europhys. Lett. 62, 282–283 (2002).
* Jian-Wei Pan, Sara Gasparoni , Rupert Ursin , Gregor Weihs and Anton Zeilinger, Experimental entanglement purification of arbitrary unknown states, Nature 423, 417–422 (2003).
* G. Weihs, H. Deng, R. Huang, M. Sugita, F. Tassone and Y. Yamamoto, Exciton-polariton lasing in a microcavity , Semi. Sci. Tech. 18, S386–S394 (2003).
* Caslav Brukner, Jian-Wei Pan, Christoph Simon , Gregor Weihs , and Anton Zeilinger, Probabilistic Instantaneous Quantum Computation, Phys. Rev. A 67, 034304 (2003).
* Hui Deng , Gregor Weihs , David Snoke , Jacqueline Bloch, and Yoshihisa Yamamoto , Polariton Lasing vs. Photon Lasing in a Semiconductor Microcavity , Proc. Natl. Acad. Sci. 100, 15318–15323 (2003).
* Thomas Jennewein, Gregor Weihs, and Anton Zeilinger, Photon Statistics and Quantum Teleportation Experiments, Proc. Waseda Int. Sympo. On Fundamental Physics – New Perspectives in Quantum Physics, J. Phys. Soc. Jpn. 72, Suppl. C, 168–173 (2003).
* Alipasha Vaziri, Jian-Wei Pan, Thomas Jennewein , Gregor Weihs , and Anton Zeilinger, Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum, Phys. Rev. Lett. 91, 227902 (2003).
* G. Weihs, H. Deng, D. Snoke, and Y. Yamamoto, Polariton lasing in a microcavity , Phys. Stat. Sol. A 201, 625-632 (2004).
* I.A. Shelykh, K.V. Kavokin, A.V. Kavokin, G. Malpuech, H. Deng, G. Weihs and Y. Yamamoto, Semiconductor microcavity as a spinoptronic device, Phys. Rev. B 70, 035320 (2004).
* A. Zeilinger, G. Weihs, T. Jennewein, and A. Aspelmeyer, Happy Centenary, Photon , Nature 433, 230–238 (2005).
* G. Weihs, Parametric Down-Conversion in Photonic Crystal Waveguides, Intl. J. Mod. Phys. B 20, 1543–1550 (2006).
* S. Groeblacher, T. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, Experimental Quantum Cryptography with Qutrits, New J. Phys. 8, 75 (2006).
 

Request a quote for LaserScan - LaserScan

Del Mar Photonics presents new unique fully computerized powerful laser spectrometer for research studies demanding fine resolution and high spectral density of radiation within UV-VIS-NIR spectral domains.

This fully automated high-resolution spectrometer based on Tekhnoscan's CW narrow-line Ti:Sapphire laser, model LaserScan TIS-FD-08/A, comes as a perfect embodiment of modern ideas and technology innovation in the field of smart laser spectrometers. Novel advanced design of the fundamental laser component implements efficient intra-cavity frequency doubling as well as provides a state-of-the-art combined ultra-wide-tunable Ti:Sapphire & Dye laser covering a super-broad spectral range between 275 and 1100 nm.

The spectrometer includes, as its base, a CW ultra-wide-tunable narrow-line laser, high-precision wavelength meter, an electronic control unit driven through USB interface as well as a software package. Positions of wavelength selection components in the laser as well as the position of the non-linear crystal are precisely controlled with the help of a closed-loop feed-back system including a wavelength meter. The spectrometer is fully controllable through a user-friendly computer interface that offers a variety of modes for setting and scanning of the radiation wavelength as well as different modes of data acquisition and recording.
 

The LaserScan TIS-FD-08/A features LabWindows™ based software running under Windows™ XP/Vista. For acquisition of experimental data an 8-channel 14-bit ADC is used with quantisation frequency of 3 MHz and channel multiplexing frequency 3 MHz.

The spectrometer is designed for wide-range spectral studies and characterization of quantum semiconductor structures, meta-materials, bio-objects as well as for nano-, bio-technological applications, and quality control.
 

Laser Spectrometer Specifications

 Light source


 CW Ti:Sapphire laser1
 CW Ti:Sapphire laser with intra-cavity frequency doubling2
 CW Dye laser3
 CW Dye laser with intra-cavity frequency doubling4

 Wavelength range


 680–1100 nm1
 390–550nm/680–1100nm2
 550–700 nm3
 275–350nm/550–700nm4

 Output power


 up to 4 W in the ranges 550–770 / 680–1100 nm
 up to 500 mW in the ranges 275–350 / 390–550 nm


 Radiation linewidth


 < 0.001 nm (< 1 GHz) / < 0.05 nm

 Wavelength accuracy


0.001 nm / 0.01 nm

 Scanning modes


 smooth scanning / step-scan


 Data channels


 One 8-channel 14-bit ADC
 One 12-bit DAC
 6 input ports
 4 output ports

 Accessories (optional)


 notebook
 laser power meter
 UV-IR viewer
 extra dye circulation unit
 pump laser




 



 

Quote request
 

Related products

CW single-frequency ring Ti:Sapphire and dye lasers

Flagship model of 15-kHz-linewidth CW Ti:Sapphire laser TIS-SF-777
CW single-frequency ring Ti:Sapphire laser model TIS-SF-07
Frequency-stabilized CW single-frequescy ring Dye laser DYE-SF-077
Resonant Frequency Doubler for CW single-frequency lasers, model FD-SF-07
Combined CW Ti:Sapphire/Dye laser with intracavity frequency doubling, model TIS/DYE-FD-08
Combined CW single-frequency laser system based on Ti:Sapphire and Dye laser TIS/DYE-SF-07


Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
sales@dmphotonics.com