Postdoctoral position in experimental physical chemistry at Minnesota
A postdoctoral position in experimental physical chemistry / chemical physics is available in Professor Doreen Leopold's group in the Chemistry Department at the University of Minnesota. The goal of this project is to study the bonding and reactivities of small transition metal clusters. These will be prepared in a flow tube and reacted with simple organic molecules. Mass-selected bare metal clusters and organometallic reaction products will be studied by vibrationally-resolved anion photoelectron spectroscopy. The spectra will provide measurements of electron affinities, electronic state energies and vibrational frequencies of the neutral and anionic species. Computational studies will also be performed to assist in the analysis of the data.

These experiments will yield spectroscopic information for organometallic radicals that may serve as models for intermediates in the reactions of transition metal catalysts, and will help to elucidate structure-reactivity relationships. In addition, these studies of small, well-defined clusters will provide experimental benchmarks to aid other researchers in developing improved computational methods to treat larger metal nanosystems of more direct technological relevance.

A strong background in each of the following three areas is preferred:
• ion beam, molecular beam, surface chemistry, or other high vacuum techniques
• molecular spectroscopy
• computational chemistry

This position is funded by a grant from the National Science Foundation and is available immediately. Students planning to complete their Ph.D. degrees this spring or summer are also encouraged to apply. The position is initially for one year and is renewable for up to two more years. The budgeted salary is $38,000 for the first year, and the position also includes health benefits. If planning an academic career at the college or university level, our postdoc will be encouraged to gain teaching experience through participation in our Department's novel MPACT program (Mentorship Program for Aspiring Chemistry Teachers).

Potential candidates are invited to e-mail for additional information. Please include a cv and a description of your research experience, interests, and future career plans.

Prof. Doreen G. Leopold
Department of Chemistry, University of Minnesota
207 Pleasant St. S. E., Minneapolis MN 55455-0431
(612) 626-2047



Del Mar Photonics is your one stop source for ultrafast (femtosecond) as well as continuum wave (CW) narrow linewidth Ti:Sapphire lasers Trestles LH Ti:Sapphire laser
Trestles LH is a new series of high quality femtosecond Ti:Sapphire lasers for applications in scientific research, biological imaging, life sciences and precision material processing. Trestles LH includes integrated sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS). Trestles LH lasers offer the most attractive pricing on the market combined with excellent performance and reliability. DPSS LH is a state-of-the-art laser designed for today’s applications. It combines superb performance and tremendous value for today’s market and has numerous advantages over all other DPSS lasers suitable for Ti:Sapphire pumping. Trestles LH can be customized to fit customer requirements and budget.

Reserve a spot in our Femtosecond lasers training workshop in San Diego, California. Come to learn how to build a femtosecond laser from a kit

DPSS DMP LH series lasers will pump your Ti:Sapphire laser. There are LH series lasers installed all over the world pumping all makes & models of oscillator. Anywhere from CEP-stabilized femtosecond Ti:Sapphire oscillators to ultra-narrow-linewidth CW Ti:Sapphire oscillators. With up to 10 Watts CW average power at 532nm in a TEMoo spatial mode, LH series lasers has quickly proven itself as the perfect DPSS pump laser for all types of Ti:Sapphire or dye laser.
Ideal for pumping of:

Trestles LH Ti:Sapphire laser
T&D-scan laser spectrometer based on narrow line CW Ti:Sapphire laser

New laser spectrometer OB' for research studies demanding fine resolution and high spectral density of radiation within UV-VIS-NIR spectral domains New laser spectrometer T&D-scan for research  that demands high resolution and high spectral density in UV-VIS-NIR spectral domains - now available with new pump option!
The T&D-scan includes a CW ultra-wide-tunable narrow-line laser, high-precision wavelength meter, an electronic control unit driven through USB interface as well as a software package. Novel advanced design of the fundamental laser component implements efficient intra-cavity frequency doubling as well as provides a state-of-the-art combined ultra-wide-tunable Ti:Sapphire & Dye laser capable of covering together a super-broad spectral range between 275 and 1100 nm. Wavelength selection components as well as the position of the non-linear crystal are precisely tuned by a closed-loop control system, which incorporates highly accurate wavelength meter.

Reserve a spot in our CW lasers training workshop in San Diego, California. Come to learn how to build a CW Ti:Sapphire laser from a kit

Open Microchannel Plate Detector MCP-MA25/2

Open Microchannel Plate Detector MCP-MA25/2 - now in stock!
Microchannel Plate Detectors MCP-MA series are an open MCP detectors with one or more microchannel plates and a single metal anode. They are intended for time-resolved detection and make use of high-speed response properties of the MCPs. MCP-MA detectors are designed for photons and particles detection in vacuum chambers or in the space. MCP-MA detectors are used in a variety of applications including UV, VUV and EUV spectroscopy, atomic and molecular physics, TOF mass–spectrometry of clusters and biomolecules, surface studies and space research.
MCP-MA detectors supplied as a totally assembled unit that can be easily mounted on any support substrate or directly on a vacuum flange. They also can be supplied premounted on a standard ConFlat flanges. buy online - ask for research discount!


Hummingbird EMCCD camera Hummingbird EMCCD camera
The digital Hummingbird EMCCD camera combines high sensitivity, speed and high resolution.
It uses Texas Instruments' 1MegaPixel Frame Transfer Impactron device which provides QE up to 65%.
Hummingbird comes with a standard CameraLink output.
It is the smallest and most rugged 1MP EMCCD camera in the world.
It is ideally suited for any low imaging application such as hyperspectral imaging, X-ray imaging, Astronomy and low light surveillance.
It is small, lightweight, low power and is therefore the ideal camera for OEM and integrators.
buy online
Femtosecond Transient Absorption Measurements system Hatteras Hatteras-D femtosecond  transient absorption data acquisition system
Future nanostructures and biological nanosystems will take advantage not only of the small dimensions of the objects but of the specific way of interaction between nano-objects. The interactions of building blocks within these nanosystems will be studied and optimized on the femtosecond time scale - says Sergey Egorov, President and CEO of Del Mar Photonics, Inc. Thus we put a lot of our efforts and resources into the development of new Ultrafast Dynamics Tools such as our Femtosecond Transient Absorption Measurements system Hatteras. Whether you want to create a new photovoltaic system that will efficiently convert photon energy in charge separation, or build a molecular complex that will dump photon energy into local heat to kill cancer cells, or create a new fluorescent probe for FRET microscopy, understanding of internal dynamics on femtosecond time scale is utterly important and requires advanced measurement techniques.

Reserve a spot in our Ultrafast Dynamics Tools training workshop in San Diego, California.

Beacon Femtosecond Optically Gated Fluorescence Kinetic Measurement System - request a quote  - pdf
Beacon together with Trestles Ti:sapphire oscillator, second and third harmonic generators. Femtosecond optical gating (FOG) method gives best temporal resolution in light-induced fluorescence lifetime measurements. The resolution is determined by a temporal width of femtosecond optical gate pulse and doesn't depend on the detector response function. Sum frequency generation (also called upconversion) in nonlinear optical crystal is used as a gating method in the Beacon femtosecond fluorescence kinetic measurement system. We offer Beacon-DX for operation together with Ti: sapphire femtosecond oscillators and Beacon-DA for operation together with femtosecond amplified pulses.

Reserve a spot in our Ultrafast Dynamics Tools training workshop in San Diego, California.

Featured Customer

Trestles LH10-fs/CW laser system at UC Santa Cruz Center of Nanoscale Optofluidics

Del Mar Photonics offers new Trestles fs/CW laser system which can be easily switched from femtosecond mode to CW and back. Having both modes of operation in one system dramatically increase a number of applications that the laser can be used for, and makes it an ideal tool for scientific lab involved in multiple research projects.
Kaelyn Leake is a PhD student in Electrical Engineering. She graduated from Sweet Briar College with a B.S. in Engineering Sciences and Physics. Her research interests include development of nanoscale optofluidic devices and their applications. Kaelyn is the recipient of a first-year QB3 Fellowship. In this video Kaelyn talks about her experimental research in nanoscale optofluidics to be done with Trestles LH laser.

Reserve a spot in our femtosecond Ti:Sapphire training workshop in San Diego, California during summer 2011

Frequency-stabilized CW single-frequency ring Dye laser DYE-SF-007 pumped by DPSS DMPLH laser installed in the brand new group of Dr. Dajun Wang at the The Chinese University of Hong Kong.
DYE-SF-077 features exceptionally narrow generation line width, which amounts to less than 100 kHz. DYE-SF-077 sets new standard for generation line width of commercial lasers. Prior to this model, the narrowest line-width of commercial dye lasers was as broad as 500 kHz - 1 MHz. It is necessary to note that the 100-kHz line-width is achieved in DYE-SF-077 without the use of an acousto-optical modulator, which, as a rule, complicates the design and introduces additional losses. A specially designed ultra-fast PZT is used for efficient suppression of radiation frequency fluctuations in a broad frequency range. DYE-SF-077 will be used in resaerch of Ultracold polar molecules, Bose-Einstein condensate and quantum degenerate Fermi gas and High resolution spectroscopy

Del Mar Photonics featured components

Del Mar Photonics continuously expands its components portfolio.

Axicon Lens
Axicon lens also known as conical lens or rotationally symmetric prism is widely used in different scientific research and application. Axicon can be used to convert a parallel laser beam into a ring, to create a non diffractive Bessel beam or to focus a parallel beam into long focus depth.
Del Mar Photonics supplies axicons with cone angles range from 130° to 179.5° for use with virtually any laser radiation. We manufacture and supply axicons made from BK7 glass, fused silica and other materials.

download brochure -
request a quote
Del Mar Photonics offers optical elements made of high quality synthetically grown Rutile Titanium Dioxide crystals. Rutile (TiO2) coupling prisms
Del Mar Photonics offers optical elements made of high quality synthetically grown Rutile Titanium Dioxide crystals. Rutile’s strong birefringency, wide transmission range and good mechanical properties make it suitable for fabrication of polarizing cubes, prisms and optical isolators. Boules having high optical transmission and homogeneity are grown by proprietary method. Typical boules have 10 - 15 mm in dia. and up to 25 mm length. Optical elements sizes - from 2 x 2 x 1 mm to 12.7 x 12.7 x 12.7 mm. Laser grade polish quality is available for finished elements. So far we the largest elements that we manufactured are 12 x15 x 5 mm, in which optical axis is parallel to 15 mm edge, 5 mm is along beam path, 12 x 15 mm faces polished 20/10 S/D, one wave flatness, parallelism < 3 arc.min. (better specs. available on request).

more details - download brochure -
request a quote

Vacuum viewport

Del Mar Photonics offer a range of competitively priced UHV viewports , Conflat, ISO or KF including a variety of coatings to enhance performance. Del Mar Photonics viewports are manufactured using advanced techniques for control of special and critical processes, including 100 percent helium leak testing and x-ray measurements for metallization control. Windows Materials include: Fused silica, Quartz , Sapphire , MgF2, BaF2, CaF2, ZnSe, ZnS, Ge, Si, Pyrex. Standard Viewing diameters from .55" to 1.94 ".
Coating - a range of custom coatings can applied - which include
- Single QWOT
- Broad Band AR
- V coatings
- DLC (Diamond like coating)

more details - request a quote



Hydrogen Thyratrons are used in such devices as radars with different power levels, high-power pulsed technical, electrophysical, medical devices and lasers. Sophisticated design and high quality ceramic-metal envelope determines long lifetime and very accurate and reliable operation of hydrogen thyratrons under wide range of environmental conditions.
- radars
- pulsed  lasers power supplies
- medical apparatus
- electrophysical instrumentation

Triggered Three-Electrode Spark Gap Switches are ceramic-metal sealed off gas discharge trigatron-type devices with a co-axial trigger electrode. These Gas Discharge Tubes contain no mercury and, due to an advanced design, feature high reliability and a long lifetime being operating under wide range of environmental conditions.

- pulsed installation for processing materials
- installations with plasma focus
- pulse power supplies for lasers and other pulse equipment
- medical apparatus such as lithotriptors and defibrillators
- processing systems for petroleum wells
We are looking forward to hear from you and help you with your optical and crystal components requirements. Need time to think about it? Drop us a line and we'll send you beautiful Del Mar Photonics mug (or two) so you can have a tea party with your colleagues and discuss your potential needs.


Sign Up Today to receive Del Mar Photonics newsletter!

* required




Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
Skype: delmarphotonics