Jaws multi-terawatt Cr:forsterite laser
First available terawatt pulses at 1240 nm. We have developed a terawatt
femtosecond chromium-doped forsterite (Cr4+:Mg2SiO4) laser system, based on an
oscillator, regenerative amplifier and four stages of multi-pass amplifiers. The
system can generate 80 fs pulses at 1240 nm wavelength, with pulse energies of
85 mJ giving a peak power range of 1-2 TW at 10 Hz.
Terawatt peak power is achieved by a technique known as chirped pulse
amplification (CPA) where the femtosecond seed pulse is temporally stretched
with a diffraction grating before being amplified. The pulse is then compressed
after the amplifying stages. This design allows the Jaws multi-terawatt system
to be assembled on a single 1.2×3.0 m optical table. The subsystems (oscillator,
stretcher, regenerative amplifier and compressor) used in the Jaws are our
standard production products. This modular approach greatly reduces the system
cost and lead time when compared to other terawatt systems available. An
additional advantage is that Cr:forsterite can be directly pumped at 1064 nm
removing the need for more expensive frequency doubled pump lasers.
Fundamental radiation, second and third harmonics of Cr:forsterite laser are
convenient for a number of applications in time-resolved spectroscopy,
telecommunications, photochemistry, photobiology, plasma physics, vacuum
ultraviolet, x-ray generation, and material processing. Wavelength range is also well outside the visible and shows significantly less
pulse broadening in atmosphere than 800 nm.
pdf brochure - Mavericks femtosecond Cr:Forsterite brochure
JAWS – 5 TW FEMTOSECOND CR:FORSTERITE LASER SYSTEM
PRICE ESTIMATE (US$)
request a formal quote
Please note that the price estimate shown here is not current, and presented for
preliminary information only.
Phase A: Mavericks CrF-65P Femtosecond Cr:Forsterite laser with electronic starter and fiber laser pump 1250nm, 40-80fs, 100MHz, 2nJ FREGAT 200. Femtosecond Cr:Forsterite regenerative amplifier with Nd:YAG pump laser, stretcher (Model ASF-40), compressor (Model ACF-40), pulse picker (Model Pismo OG12-2/1), synchronization electronics and cover box Pump Laser 1060nm, 30ns, 30mJ, 10Hz 1250nm, 200ps, 10Hz, 0.5mJ Delivery time: 3 months ARO
|
199000.- |
Phase B: 2 TW System upgradable to 5TW PumpLaser 1060nm, 30ns, 0.7J, 10Hz Four MPA providing 1250nm, 200ps, 50mJ
Pump Laser 1060nm, 30ns, 1J, 10Hz Two MPA providing 1250nm, 200ps, 10Hz, 200mJ
Compressor: Providing 1250nm, 60-80fs, 10Hz, 80 - 120 mJ (1 -2TW)
Delivery time: 3 months after Phase A
|
299000.- |
Phase C: 5 TW Upgrade 1250nm, 200ps, 10Hz, 1 J before compression 1250nm, 100fs, 10Hz, 500mJ --- 50fs, 10Hz, 250mJ
Estimated delivery time: 3 months after Phase B
Notes: Phase B is built to be upgradeable to Phase C Phase C does not include vacuum chambers. We recommend using vacuum chambers to place Phase C, however clear room conditions may be enough
Warranty: 1 year warranty included (except gratings: warranty 6 months)
|
299000.- |
TOTAL: |
797000.- |
2nd year warranty can be purchased for 7% 3rd year warranty can be purchased for 10% |
55790.- 79700.- |
TOTAL INCLUDING 3 YEARS WARRANTY: |
932490.- |
Multi-Terawatt Ti:Sapphire lasers
Femtosecond Two-stage Amplifier System Wedge-XL
Operation wavelength: 800 ± 10 nm
Output pulse duration: < 70 fs
Output energy: 100 mJ
Pulse repetition rate: 10 Hz
Femtosecond Terawatt Ti:sapphire Laser System Teahupoo MPA-XL
Output pulse wavelength: 810 ± 10 nm
Pulse width after compressor: <40 fs
Recommended maximum pulse energy after air compressor: 60 mJ (1.5 TW at 40 fs)
Maximum pulse energy of amplified stretched pulses: 0.2 J
Pulse repetition rate: 10 Hz
Output spectral bandwidth: 30 nm
Output beam diameter: 15 mm
Output beam quality: M2<2
Contrast: >106 for ns time scale
Compressor efficiency: 65%
Output beam polarization: Horizontal
CORTES-E-1 Table –Top Terawatt repetitive rate
laser system
Peak Power > 1TW
Pulse duration < 50 fs
Output pulse energy ≥ 50 mJ
Repetition rate 10 Hz
Wavelength Around 800 nm (fixed)
Energy stability Better than 5%
Beam quality M² ≤ 1.6
ns prepulse contrast ratio ≥ 105 : 1
ps prepulse contrast ratio ≥ 10³ : 1 @ 1 ps
≥ 105 : 1 @ 5 ps
≥ 10 6 : 1 @ 10-20 ps
Polarization of the final output beam Linear, Ellipticity < 10-2
Table Top Ultra High Intensity Ti:Sapphire Laser
Cortes-E
Pulse Length: < 60 fs
Energy per pulse: 100 mJ
Repetition rate: 10 Hz
Contrast ratio: > 106:1
Stability: < 3 %
Tuning range: 790-810 nm fro 50 fs pulses
Gaussian beam: M2 < 1.1
Beam diameter: 4 mm after focusing
Cortes-800 40 Terawatt Laser
System
The new Cortes-800 amplification system provides terawatt peak
power in
a compact package. Seeded with our compact Trestles Ti:sapphire oscillator,
the Cortes-800 consists of three chirped pulse amplification (CPA)
stages that fit on a single optical table. Pulse energies of greater than 1.5
J are achieved before compression in a vacuum chamber. Active feedback
and pulse shaping allows the Cortes-800 to produce extremely high contrast
ratios, and sub 30 fs output pulses with peak powers greater than 40
terawatts. Fully integrated timing and control software make the Cortes-
800 a perfect tool for the study of high energy laser- matter interaction.
The initial stage of the system consists of the
TRESTLES-20 femtosecond oscillator
pumped with a 532 nm, 6 W DPSS
laser. Generated 20 fs pulses are
temporally stretched with Offner
triplet technology to 400 ps. To
pre-correct for spectral changes
incurred as pulses pass through
the system, the stretched pulses
pass through an acousto-optic
programmable dispersive filter.
The AOPDF compensates for gain
narrowing and wavelength shifting in
the amplification stages and for dispersion
due to propagation through system components.
Before insertion into the first amplification
stage, a PISMO Pockels cell pulse picker is used
to gate single pulses at a repetition rate of 10 Hz
from the oscillator pulse train. The stretched,
shaped and picked pulses are then amplified by
a WEDGE-10 multi-pass amplifier, providing
high contrast ratio.
After the initial amplification stage the pulses
pass through a spatial filter to increase the beam
diameter and improve the spatial quality of the
beam.
A second PISMO Pockels cell is
used to increase the temporal
contrast ratio and to
protect STAGE-1 from
back reflections. The
spatially expanded
pulses pass through
STAGE-2, a 5-pass
multi-pass amplifier.
Another spatial filter
is used to clean the
beam before the final
amplifying stage, STAGE-
3. The 4-pass power amplifier
increases the pulse energy to
1,500 mJ per pulse.
Pulse compression takes place within
a sealed vacuum chamber with a
dielectric grating compressor. Grating
position, and thus final pulse
duration, are adjusted with the help
of computer controlled motorized
stages. A deformable mirror (DM)
coupled with a Shack-Hartmann
wavefront sensor is used to correct
wavefront distortions, resulting in a
0.8 Strehl ratio.
Jaws Laser System Cr:Forsterite Multi-Terawatt Amplified Laser -
price estimate
1250nm, 200ps, 10Hz, 1 J before compression
1250nm, 100fs, 10Hz, 500mJ --- 50fs, 10Hz, 250mJ - after compression
Cortes-K Femtosecond Seed Laser for Petawatt KrF Excimer Laser
Cortes-O 200 TW Femtosecond Laser CPOPA
Del Mar Photonics - Newsletter December 2010 - Newsletter April 2011
Product news and updates - Training Workshops
- Featured Customer - Other News
Trestles LH Ti:Sapphire
laser Trestles LH is a new series of high quality femtosecond Ti:Sapphire lasers for applications in scientific research, biological imaging, life sciences and precision material processing. Trestles LH includes integrated sealed, turn-key, cost-effective, diode-pumped solid-state (DPSS). Trestles LH lasers offer the most attractive pricing on the market combined with excellent performance and reliability. DPSS LH is a state-of-the-art laser designed for today’s applications. It combines superb performance and tremendous value for today’s market and has numerous advantages over all other DPSS lasers suitable for Ti:Sapphire pumping. Trestles LH can be customized to fit customer requirements and budget. Reserve a
spot in our Femtosecond lasers training
workshop in San Diego, California. Come to learn how to build a
femtosecond laser from a kit |
|
DPSS DMPLH lasers |
|
New laser spectrometer
T&D-scan for research that
demands high resolution and high spectral
density in UV-VIS-NIR spectral domains - now available with
new pump option! The T&D-scan includes a CW ultra-wide-tunable narrow-line laser, high-precision wavelength meter, an electronic control unit driven through USB interface as well as a software package. Novel advanced design of the fundamental laser component implements efficient intra-cavity frequency doubling as well as provides a state-of-the-art combined ultra-wide-tunable Ti:Sapphire & Dye laser capable of covering together a super-broad spectral range between 275 and 1100 nm. Wavelength selection components as well as the position of the non-linear crystal are precisely tuned by a closed-loop control system, which incorporates highly accurate wavelength meter. Reserve a
spot in our CW lasers training
workshop in San Diego, California. Come to
learn how to build a
CW
Ti:Sapphire laser from a kit |
|
Near IR viewers Ultraviolet viewers are designed to observe radiation emitted by UV sources. |
|
AOTF Infrared Spectrometer |
|
Open Microchannel Plate Detector
MCP-MA25/2 -
now in stock! |
|
Hummingbird EMCCD camera The digital Hummingbird EMCCD camera combines high sensitivity, speed and high resolution. It uses Texas Instruments' 1MegaPixel Frame Transfer Impactron device which provides QE up to 65%. Hummingbird comes with a standard CameraLink output. It is the smallest and most rugged 1MP EMCCD camera in the world. It is ideally suited for any low imaging application such as hyperspectral imaging, X-ray imaging, Astronomy and low light surveillance. It is small, lightweight, low power and is therefore the ideal camera for OEM and integrators. buy online |
|
Hatteras-D
femtosecond transient absorption data acquisition system Future nanostructures and biological nanosystems will take advantage not only of the small dimensions of the objects but of the specific way of interaction between nano-objects. The interactions of building blocks within these nanosystems will be studied and optimized on the femtosecond time scale - says Sergey Egorov, President and CEO of Del Mar Photonics, Inc. Thus we put a lot of our efforts and resources into the development of new Ultrafast Dynamics Tools such as our Femtosecond Transient Absorption Measurements system Hatteras. Whether you want to create a new photovoltaic system that will efficiently convert photon energy in charge separation, or build a molecular complex that will dump photon energy into local heat to kill cancer cells, or create a new fluorescent probe for FRET microscopy, understanding of internal dynamics on femtosecond time scale is utterly important and requires advanced measurement techniques. Reserve a
spot in our Ultrafast Dynamics Tools
training workshop in San Diego, California. |
|
Beacon Femtosecond Optically Gated Fluorescence Kinetic Measurement System
-
request a quote -
pdf Reserve a
spot in our Ultrafast Dynamics Tools
training workshop in San Diego, California. |
|
Terahertz systems, set ups and components New band pass and long pass THz optical filters based on porous silicon and metal mesh technologies. Band pass filters with center wavelengths from 30 THz into GHz range and transmissions up to 80% or better. Standard designs with clear aperture diameters from 12.5 to 37.5 mm. Long pass filters with standard rejection edge wavelengths from 60 THz into GHz range. Maximum transmission up to 80% or better, standard designs at 19.0 and 25.4 mm diameters. Excellent thermal (from cryogenic to 600 K) and mechanical properties THz products: THz Spectrometer kit with Antenna THz transmission setup THz time domain spectrometer Pacifica fs1060pca THz time domain spectrometer Pacifica fs780pca THz detectors: Golay cell and LiTaO3 piroelectric detectors PCA - Photoconductive Antenna as THz photomixer Pacifica THz Time Domain Spectrometer - Trestles Pacifica Holographic Fourier Transform Spectrometer for THz Region Wedge TiSapphire Multipass Amplifier System - THz pulses generation Terahertz Spectroscopic Radar Mobile System for Detection of Concealed Explosives Band pass filters with center wavelengths from 30 THz into GHz range Long pass filters with standard rejection edge wavelengths from 60 THz into GHz range Generation of THz radiation using lithium niobate Terahertz crystals (THz): ZnTe, GaAs, GaP, LiNbO3 - Wedge ZnTe |
|
iPCA - interdigital Photoconductive Antenna for terahertz waves Large area broadband antenna with lens array and high emitter conversion efficiency iPCA with LT-GaAs absorber, microlens array for laser excitation wavelengths l £ 850 nm, adjusted hyperhemispherical silicon lens with a high power conversion efficiency of 0.2 mW THz power / W optical power. The iPCA can be used also as large area THz detector. The two types iPCAp and iPCAs have the same active interdigital antenna area but different contact pad directions with respect to the electrical THz field. Interdigital Photoconductive Antenna for terahertz waves generation using femtosecond Ti:Sapphire laser THz books |
|
IntraStage lowers the cost
of test data management! Struggling with gigabytes or terabytes of test data? IntraStage easily transforms test data from disparate sources into web-based quality metrics and engineering intelligence you can use.
Contact
us today to discuss your test management requirements and specifications of your
application. |
Training Workshops
Come to San Diego next summer! Attend one of our training workshops in San Diego, California
during summer 2011 Del Mar Photonics has presented training workshops for customers and potential customers in the past 3 years. Our workshops cover scientific basics, technical details and provide generous time for hands-on training. Each workshop is a three-day seminar conducted by professional lecturer from 10am to 4pm. It includes lunch, as well as a training materials. We have also reserved two days for Q&A sessions, one-on-one system integration discussions, social networking, and San Diego sightseeing.
The following training workshops will be offered during this
summer: |
Featured Customer
Trestles LH10-fs/CW laser system at UC Santa Cruz Center of Nanoscale Optofluidics
Del
Mar Photonics offers new
Trestles fs/CW laser system which can be easily
switched from femtosecond mode to CW and back. Having both modes of operation in one system dramatically increase a
number of applications that the laser can be used for, and makes it an ideal
tool for scientific lab involved in multiple research projects. |
|
Frequency-stabilized CW single-frequency ring Dye laser DYE-SF-007 pumped by DPSS DMPLH laser installed in the brand new group of Dr. Dajun Wang at the The Chinese University of Hong Kong. DYE-SF-077 features exceptionally narrow generation line width, which amounts to less than 100 kHz. DYE-SF-077 sets new standard for generation line width of commercial lasers. Prior to this model, the narrowest line-width of commercial dye lasers was as broad as 500 kHz - 1 MHz. It is necessary to note that the 100-kHz line-width is achieved in DYE-SF-077 without the use of an acousto-optical modulator, which, as a rule, complicates the design and introduces additional losses. A specially designed ultra-fast PZT is used for efficient suppression of radiation frequency fluctuations in a broad frequency range. DYE-SF-077 will be used in resaerch of Ultracold polar molecules, Bose-Einstein condensate and quantum degenerate Fermi gas and High resolution spectroscopy |
Other News
Optical Society of Southern California meeting at UCSD OSSC 2011-04-27
Nd:YAG laser ordered by the University of Leon, UANL, Mexico
Wedge 50 Multipass Amplifier pumped with a Darwin-527-30-M DPSS Laser
ordered by Hong Kong customer
New
Trestles LH10-fs/CW femtosecond+CW laser ready for delivery to the
University of California Santa Cruz
Trestles femtosecond
Ti:Sapphire laser delivered to North Carolina State
University
Del Mar Photonics sponsor IONS (International OSA Network of Students)
conference IONS-NA-2 in Tucson, Arizona
IONS-NA-2
website
Best talk and best
poster awards at IONS-Moscow 2010 conference sponsored by Del Mar Photonics
Watch Del Mar Photonics
videos!
Del Mar Photonics is now on Twitter!
Del Mar Photonics featured components
Del Mar Photonics continuously expands its components portfolio.
|
Solar
Prisms for Concentrating Photovoltaic Systems (CPV) Solar cells made of compound semiconductors such as gallium arsenide are very expensive. Usually very small cells are installed and various means such as mirrors, lenses, prisms, etc..are used to concentrate sunlight on the cells. Concentration photovoltaic technology (CPV) uses the solar radiation with an efficiency of 40%, double that of conventional solar cells Del Mar Photonics design custom Concentrating Photovoltaic Systems (CPV) and supply variety of the optical components for CPV such as solar prisms shown in the picture. |
|
Axicon Lens Axicon lens also known as conical lens or rotationally symmetric prism is widely used in different scientific research and application. Axicon can be used to convert a parallel laser beam into a ring, to create a non diffractive Bessel beam or to focus a parallel beam into long focus depth. Del Mar Photonics supplies axicons with cone angles range from 130° to 179.5° for use with virtually any laser radiation. We manufacture and supply axicons made from BK7 glass, fused silica and other materials. download brochure - request a quote |
Rutile (TiO2) coupling
prisms Del Mar Photonics offers optical elements made of high quality synthetically grown Rutile Titanium Dioxide crystals. Rutile’s strong birefringency, wide transmission range and good mechanical properties make it suitable for fabrication of polarizing cubes, prisms and optical isolators. Boules having high optical transmission and homogeneity are grown by proprietary method. Typical boules have 10 - 15 mm in dia. and up to 25 mm length. Optical elements sizes - from 2 x 2 x 1 mm to 12.7 x 12.7 x 12.7 mm. Laser grade polish quality is available for finished elements. So far we the largest elements that we manufactured are 12 x15 x 5 mm, in which optical axis is parallel to 15 mm edge, 5 mm is along beam path, 12 x 15 mm faces polished 20/10 S/D, one wave flatness, parallelism < 3 arc.min. (better specs. available on request). more details - download brochure - request a quote |
|
|
Sapphire components Sapphire Circular Windows - Square & Rectangle - Rods Sapphire & Ruby Rings - Sapphire & Ruby Balls - Sapphire & Ruby Nozzles Sapphire Lenses - Ball & Seat - Special Products - Sapphire Vee & Cup Jewels Sapphire Ceramics - Ceramic Sleeves - Ceramic Holes - Ceramic Rods Sapphire & Ruby Orifices - Sapphire & Ruby Tubes - Sapphire Components Sapphire Half Round Rod - Sapphire Windows - Rods & Tubes - Special Part Sapphire Prism - Sapphire Chisel - Sapphire Square Rod |
Vacuum viewport Del Mar Photonics offer a range of competitively priced UHV viewports , Conflat, ISO or KF including a variety of coatings to enhance performance. Del Mar Photonics viewports are manufactured using advanced techniques for control of special and critical processes, including 100 percent helium leak testing and x-ray measurements for metallization control. Windows Materials include: Fused silica, Quartz , Sapphire , MgF2, BaF2, CaF2, ZnSe, ZnS, Ge, Si, Pyrex. Standard Viewing diameters from .55" to 1.94 ". Coating - a range of custom coatings can applied - which include - Single QWOT - Broad Band AR - V coatings - ITO - DLC (Diamond like coating) more details - request a quote |
|
|
Hydrogen
Thyratrons are used in
such devices as radars with different power levels, high-power pulsed
technical, electrophysical, medical devices and lasers. Sophisticated
design and high quality ceramic-metal envelope determines long lifetime
and very accurate and reliable operation of hydrogen thyratrons under wide range of environmental
conditions. Applications: - radars - pulsed lasers power supplies - medical apparatus - electrophysical instrumentation Triggered Three-Electrode Spark Gap Switches are ceramic-metal sealed off gas discharge trigatron-type devices with a co-axial trigger electrode. These Gas Discharge Tubes contain no mercury and, due to an advanced design, feature high reliability and a long lifetime being operating under wide range of environmental conditions. Applications: - pulsed installation for processing materials - installations with plasma focus - pulse power supplies for lasers and other pulse equipment - medical apparatus such as lithotriptors and defibrillators - processing systems for petroleum wells |
|
Trigger Transformers Del Mar Photonics supply trigger transformers for triggered spark gaps and other applications. Contact us to today to discuss your application or requesta quote. Trigger Transformers are used to provide a fast high voltage pulse up to 30kV/µs and more. This high voltage pulse is applied to the trigger electrode to initiate switching action in the three-electrode spark gaps. Either positive or negative pulses can be obtained from all of the transformers.
|
We are looking forward to hear from you and help you with your optical and crystal components requirements. Need time to think about it? Drop us a line and we'll send you beautiful Del Mar Photonics mug (or two) so you can have a tea party with your colleagues and discuss your potential needs. |
Del Mar Photonics, Inc.
4119 Twilight Ridge
San Diego, CA 92130
tel: (858) 876-3133
fax: (858) 630-2376
Skype: delmarphotonics
sales@dmphotonics.com